Radiomics-based prediction of hemorrhage expansion among patients with thrombolysis/thrombectomy related-hemorrhagic transformation using machine learning

医学 溶栓 接收机工作特性 逻辑回归 Lasso(编程语言) 过采样 随机森林 人工智能 曲线下面积 放射科 内科学 计算机科学 计算机网络 万维网 心肌梗塞 带宽(计算)
作者
Junfeng Liu,Wendan Tao,Zhetao Wang,Xinyue Chen,Bo Wu,Ming Liu
出处
期刊:Therapeutic Advances in Neurological Disorders [SAGE Publishing]
卷期号:14: 175628642110600-175628642110600 被引量:14
标识
DOI:10.1177/17562864211060029
摘要

Introduction: Patients with hemorrhagic transformation (HT) were reported to have hemorrhage expansion. However, identification these patients with high risk of hemorrhage expansion has not been well studied. Objectives: We aimed to develop a radiomic score to predict hemorrhage expansion after HT among patients treated with thrombolysis/thrombectomy during acute phase of ischemic stroke. Methods: A total of 104 patients with HT after reperfusion treatment from the West China hospital, Sichuan University, were retrospectively included in this study between 1 January 2012 and 31 December 2020. The preprocessed initial non-contrast-enhanced computed tomography (NECT) imaging brain images were used for radiomic feature extraction. A synthetic minority oversampling technique (SMOTE) was applied to the original data set. The after-SMOTE data set was randomly split into training and testing cohorts with an 8:2 ratio by a stratified random sampling method. The least absolute shrinkage and selection operator (LASSO) regression were applied to identify candidate radiomic features and construct the radiomic score. The performance of the score was evaluated by receiver operating characteristic (ROC) analysis and a calibration curve. Decision curve analysis (DCA) was performed to evaluate the clinical value of the model. Results: Among the 104 patients, 17 patients were identified with hemorrhage expansion after HT detection. A total of 154 candidate predictors were extracted from NECT images and five optimal features were ultimately included in the development of the radiomic score by using logistic regression machine-learning approach. The radiomic score showed good performance with high area under the curves in both the training data set (0.91, sensitivity: 0.83; specificity: 0.89), test data set (0.87, sensitivity: 0.60; specificity: 0.85), and original data set (0.82, sensitivity: 0.77; specificity: 0.78). The calibration curve and DCA also indicated that there was a high accuracy and clinical usefulness of the radiomic score for hemorrhage expansion prediction after HT. Conclusions: The currently established NECT-based radiomic score is valuable in predicting hemorrhage expansion after HT among patients treated with reperfusion treatment after ischemic stroke, which may aid clinicians in determining patients with HT who are most likely to benefit from anti-expansion treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橙完成签到 ,获得积分10
刚刚
科研小王完成签到,获得积分10
5秒前
小丫头发布了新的文献求助10
7秒前
科研小王发布了新的文献求助10
8秒前
梦梦完成签到,获得积分10
9秒前
guangshuang发布了新的文献求助10
10秒前
10秒前
amupf发布了新的文献求助10
11秒前
grasslands完成签到,获得积分10
11秒前
12秒前
一一完成签到 ,获得积分10
12秒前
13秒前
tjfwg完成签到,获得积分10
13秒前
CYT发布了新的文献求助10
14秒前
15秒前
NatureLee完成签到 ,获得积分10
15秒前
万能图书馆应助Yi采纳,获得10
16秒前
sduwl完成签到,获得积分10
16秒前
典雅雨寒完成签到,获得积分10
16秒前
18秒前
Mic发布了新的文献求助10
18秒前
grasslands发布了新的文献求助10
20秒前
勤恳的向日葵完成签到,获得积分10
20秒前
orixero应助blance采纳,获得10
20秒前
梦梦发布了新的文献求助10
20秒前
北冥有鱼完成签到 ,获得积分10
20秒前
26秒前
Xiaoxiao应助冷酷蛋挞采纳,获得10
27秒前
27秒前
强健的绮琴完成签到,获得积分10
27秒前
jacs111完成签到,获得积分10
27秒前
29秒前
零季发布了新的文献求助10
29秒前
Mic完成签到,获得积分10
31秒前
干净柏柳完成签到 ,获得积分10
31秒前
奥斯卡完成签到,获得积分0
32秒前
lijf2024发布了新的文献求助10
33秒前
PEI完成签到,获得积分10
33秒前
浮想圆影发布了新的文献求助10
33秒前
谷蓝完成签到,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781029
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227468
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669541
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734