Efficient Computer-Aided Design of Dental Inlay Restoration: A Deep Adversarial Framework

镶嵌 鉴别器 计算机科学 牙冠(牙科) 人工智能 计算机视觉 牙科 医学 电信 探测器
作者
Sukun Tian,Miaohui Wang,Fulai Yuan,Ning Dai,Yuchun Sun,Wuyuan Xie,Jing Qin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2415-2427 被引量:38
标识
DOI:10.1109/tmi.2021.3077334
摘要

Restoring the normal masticatory function of broken teeth is a challenging task primarily due to the defect location and size of a patient's teeth. In recent years, although some representative image-to-image transformation methods (e.g. Pix2Pix) can be potentially applicable to restore the missing crown surface, most of them fail to generate dental inlay surface with realistic crown details (e.g. occlusal groove) that are critical to the restoration of defective teeth with varying shapes. In this article, we design a computer-aided Deep Adversarial-driven dental Inlay reStoration (DAIS) framework to automatically reconstruct a realistic surface for a defective tooth. Specifically, DAIS consists of a Wasserstein generative adversarial network (WGAN) with a specially designed loss measurement, and a new local-global discriminator mechanism. The local discriminator focuses on missing regions to ensure the local consistency of a generated occlusal surface, while the global discriminator aims at defective teeth and adjacent teeth to assess if it is coherent as a whole. Experimental results demonstrate that DAIS is highly efficient to deal with a large area of missing teeth in arbitrary shapes and generate realistic occlusal surface completion. Moreover, the designed watertight inlay prostheses have enough anatomical morphology, thus providing higher clinical applicability compared with more state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助dllz采纳,获得10
刚刚
1秒前
甜蜜秋荷完成签到,获得积分10
1秒前
1秒前
1秒前
iris601完成签到,获得积分10
1秒前
1秒前
1秒前
Owen应助清爽语柳采纳,获得10
1秒前
妍小猪发布了新的文献求助10
2秒前
舒心傲蕾发布了新的文献求助10
2秒前
Liufuquan发布了新的文献求助10
2秒前
852应助隔壁老六采纳,获得10
2秒前
索靖发布了新的文献求助10
2秒前
AHR发布了新的文献求助10
2秒前
SciGPT应助wyg117采纳,获得10
3秒前
3秒前
竹筏过海应助健壮东蒽采纳,获得10
4秒前
不安忆寒发布了新的文献求助10
4秒前
zyznh完成签到 ,获得积分10
4秒前
wly9399375完成签到,获得积分10
4秒前
sasa完成签到,获得积分10
5秒前
妮妮发布了新的文献求助10
5秒前
5秒前
调皮的背包完成签到,获得积分10
5秒前
Mira完成签到,获得积分10
6秒前
6秒前
huyuan发布了新的文献求助10
7秒前
xxxx完成签到,获得积分10
7秒前
知名不具发布了新的文献求助10
7秒前
7秒前
Hollow完成签到,获得积分10
7秒前
7秒前
Lred完成签到,获得积分10
7秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
Diagnostic Pathology: Kidney Diseases 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827932
求助须知:如何正确求助?哪些是违规求助? 3370227
关于积分的说明 10461743
捐赠科研通 3090034
什么是DOI,文献DOI怎么找? 1700190
邀请新用户注册赠送积分活动 817728
科研通“疑难数据库(出版商)”最低求助积分说明 770403