材料科学
法拉第效率
相(物质)
锂(药物)
扩散
尖晶石
化学工程
涂层
离子
电极
纳米技术
电化学
冶金
物理化学
热力学
物理
工程类
内分泌学
有机化学
化学
医学
量子力学
作者
Jili Li,Tiekun Jia,Chunjuan Tang,Dongsheng Yu,Jie Sun,Wanzhen Zhang,Yujiang Wang,Joong Hee Lee,Nam Hoon Kim
标识
DOI:10.1016/j.scriptamat.2021.114133
摘要
The practical application of Li-rich layered oxides is impeded by its cycle instability, poor rate capability and serious voltage decay. Here, nano-sized spinel Li4Ti5O12 (LTO) is constructed on Li1.2Ni0.13Co0.13Mn0.54O2 (LLNCMO). The distinctly heteroepitaxial structure of LTO nanocoating on LLNCMO is corroborated by HAADF-STEM. The LTO coating with fast lithium ion diffusion kinetics acts as "lithium ion pump" when Li+-ions cross over it. The integrated structure can effectively retard oxygen evolution and phase transformation engendering higher capacity and voltage retention. LTO heteroepitaxially coated LLNCMO ([email protected]) shows an improvement of initial coulombic efficiency to 74.3% and more stable life with a high capacity retention up to 96.9% at 2C after 500 cycles (40.5% for LLNCMO). [email protected] demonstrates minimal voltage fading of 1.33 mV per cycle suggesting suppression of phase conversion to spinel-like structure. The epitaxial spinel modification strategy can be applied to control the surface stability of cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI