Vortex domain configuration for energy-storage ferroelectric ceramics design: A phase-field simulation

铁电性 极化(电化学) 储能 材料科学 铁电陶瓷 涡流 电场 介电常数 陶瓷 动能 电介质 凝聚态物理 机械 光电子学 复合材料 物理 热力学 经典力学 化学 物理化学 功率(物理) 量子力学
作者
Ziming Cai,Chaoqiong Zhu,Longwen Wu,Bing Luo,Peizhong Feng,Xiaohui Wang
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:119 (3) 被引量:13
标识
DOI:10.1063/5.0051853
摘要

The utilization of ferroelectrics in forms of ceramics, films, and composites toward energy-storage applications is of great interest recent years. However, the simultaneous achievement of high polarization, high breakdown strength, low energy loss, and weakly nonlinear polarization–electric field (P–E) correlation has been a huge challenge, which impedes progress in energy storage performance. In this work, a vortex domain engineering constructed via the core–shell structure in ferroelectric ceramics is proposed. The formation and the switching characteristics of vortex domains (VDs) were validated through a phase-field simulation based on the time-dependent Ginzburg–Landau kinetic equation. Benefiting from the smaller depth of a potential well in the energy profiles, the switching of VDs was much easier than that of conventional large-sized domains, which was found to be the origin of the lower coercive field, lower remanent polarization, and weaker nonlinear P–E correlation. Choosing BaTiO3 (BT) as a representative of ferroelectric ceramics, the shell fractions and permittivity values were varied in our phase-field simulation to optimize the energy storage performance. As a result, a large discharge energy of 6.5 J/cm3 was obtained in BT ferroelectric ceramics with a shell fraction of 5% and a shell permittivity of 20 under the applied electric field of 100 kV/mm, which is almost 140% higher than that with no shell structure. In general, the vortex domain engineering proposed in this work can serve as a universal method in designing high-performance ferroelectrics with simultaneous high breakdown strength, high discharge energy density, and high energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏妲己完成签到 ,获得积分10
刚刚
zxf完成签到,获得积分10
刚刚
苏素肃发布了新的文献求助10
刚刚
1秒前
3秒前
xiaoyuanyuan发布了新的文献求助10
3秒前
权翼完成签到,获得积分10
5秒前
科研通AI5应助熊巴巴采纳,获得10
6秒前
Phi.Wang发布了新的文献求助10
7秒前
abb发布了新的文献求助10
8秒前
hou123456发布了新的文献求助10
8秒前
华仔应助Rita采纳,获得10
9秒前
打打应助xiaoyuanyuan采纳,获得10
10秒前
充电宝应助空谷新苗采纳,获得10
10秒前
苏素肃完成签到,获得积分10
11秒前
leeOOO完成签到,获得积分10
11秒前
昏睡的蟠桃应助宋晓蓝采纳,获得150
11秒前
13秒前
叶子发布了新的文献求助10
14秒前
今后应助鸡蛋采纳,获得10
15秒前
科研通AI5应助热爱生活采纳,获得30
16秒前
小粒橙发布了新的文献求助30
17秒前
天天发布了新的文献求助10
17秒前
乔威完成签到,获得积分10
17秒前
wangpeijia发布了新的文献求助10
18秒前
坚定妙旋完成签到,获得积分10
19秒前
依梦完成签到,获得积分10
19秒前
Akim应助fbbggb采纳,获得10
20秒前
20秒前
朱gui完成签到,获得积分10
23秒前
23秒前
11发布了新的文献求助10
23秒前
脑洞疼应助李洪杰采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794514
求助须知:如何正确求助?哪些是违规求助? 3339370
关于积分的说明 10295665
捐赠科研通 3056025
什么是DOI,文献DOI怎么找? 1676881
邀请新用户注册赠送积分活动 804890
科研通“疑难数据库(出版商)”最低求助积分说明 762174