Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence

最小边界框 分歧(语言学) 跳跃式监视 旋转(数学) 目标检测 高斯分布 回归 探测器 不变(物理) 计算机科学 算法 人工智能 数学 模式识别(心理学) 统计 物理 哲学 图像(数学) 电信 量子力学 语言学 数学物理
作者
Xue Yang,Xiaojiang Yang,Jirui Yang,Qi Ming,Wentao Wang,Qi Tian,Junchi Yan
出处
期刊:Cornell University - arXiv 被引量:141
标识
DOI:10.48550/arxiv.2106.01883
摘要

Existing rotated object detectors are mostly inherited from the horizontal detection paradigm, as the latter has evolved into a well-developed area. However, these detectors are difficult to perform prominently in high-precision detection due to the limitation of current regression loss design, especially for objects with large aspect ratios. Taking the perspective that horizontal detection is a special case for rotated object detection, in this paper, we are motivated to change the design of rotation regression loss from induction paradigm to deduction methodology, in terms of the relation between rotation and horizontal detection. We show that one essential challenge is how to modulate the coupled parameters in the rotation regression loss, as such the estimated parameters can influence to each other during the dynamic joint optimization, in an adaptive and synergetic way. Specifically, we first convert the rotated bounding box into a 2-D Gaussian distribution, and then calculate the Kullback-Leibler Divergence (KLD) between the Gaussian distributions as the regression loss. By analyzing the gradient of each parameter, we show that KLD (and its derivatives) can dynamically adjust the parameter gradients according to the characteristics of the object. It will adjust the importance (gradient weight) of the angle parameter according to the aspect ratio. This mechanism can be vital for high-precision detection as a slight angle error would cause a serious accuracy drop for large aspect ratios objects. More importantly, we have proved that KLD is scale invariant. We further show that the KLD loss can be degenerated into the popular $l_{n}$-norm loss for horizontal detection. Experimental results on seven datasets using different detectors show its consistent superiority, and codes are available at https://github.com/yangxue0827/RotationDetection and https://github.com/open-mmlab/mmrotate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
2秒前
开心小丸子完成签到,获得积分10
2秒前
山长子完成签到,获得积分10
3秒前
3秒前
3秒前
英姑应助silence采纳,获得10
5秒前
天真的青发布了新的文献求助30
5秒前
张泽龄关注了科研通微信公众号
6秒前
星辰大海应助十八采纳,获得10
6秒前
Xiaoxiao应助十八采纳,获得10
6秒前
ding应助十八采纳,获得10
6秒前
赘婿应助十八采纳,获得150
6秒前
7秒前
xiajiahao完成签到,获得积分10
7秒前
8秒前
脑洞疼应助痴情的雁易采纳,获得10
8秒前
白玄发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
伶俐问薇完成签到,获得积分10
10秒前
健忘丹珍完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
帅气书文完成签到,获得积分10
13秒前
Erin发布了新的文献求助10
13秒前
13秒前
YK完成签到,获得积分0
14秒前
吴锋发布了新的文献求助10
15秒前
18秒前
张泽龄发布了新的文献求助10
19秒前
充电宝应助sup3rX采纳,获得50
19秒前
含糊的冬瓜完成签到,获得积分10
19秒前
19秒前
19秒前
NexusExplorer应助i3utter采纳,获得10
20秒前
科研通AI5应助lJH采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061902
求助须知:如何正确求助?哪些是违规求助? 4285844
关于积分的说明 13355704
捐赠科研通 4103720
什么是DOI,文献DOI怎么找? 2246915
邀请新用户注册赠送积分活动 1252595
关于科研通互助平台的介绍 1183502