数学优化
随机规划
计算机科学
分段
稳健性(进化)
稳健优化
可扩展性
软件
马尔可夫决策过程
二次规划
半定规划
二次方程
最优化问题
随机优化
数学
马尔可夫过程
基因
统计
数学分析
数据库
生物化学
化学
程序设计语言
几何学
作者
Xiangyi Fan,Grani A. Hanasusanto
出处
期刊:Informs Journal on Computing
日期:2023-11-29
卷期号:36 (2): 526-542
被引量:2
标识
DOI:10.1287/ijoc.2021.0306
摘要
We study two-stage stochastic optimization problems with random recourse, where the adaptive decisions are multiplied with the uncertain parameters in both the objective function and the constraints. To mitigate the computational intractability of infinite-dimensional optimization, we propose a scalable approximation scheme via piecewise linear and piecewise quadratic decision rules. We then develop a data-driven distributionally robust framework with two layers of robustness to address distributionally uncertainty. The emerging optimization problem can be reformulated as an exact copositive program, which admits tractable approximations in semidefinite programming. We design a decomposition algorithm where smaller-size semidefinite programs can be solved in parallel, which further reduces the runtime. Lastly, we establish the performance guarantees of the proposed scheme and demonstrate its effectiveness through numerical examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI