Strain-controlled electrocatalysis on multimetallic nanomaterials

电催化剂 纳米材料 应变工程 材料科学 拉伤 纳米材料基催化剂 纳米技术 纳米颗粒 化学 医学 电化学 电极 冶金 内科学 物理化学
作者
Mingchuan Luo,Shaojun Guo
出处
期刊:Nature Reviews Materials [Nature Portfolio]
卷期号:2 (11) 被引量:920
标识
DOI:10.1038/natrevmats.2017.59
摘要

Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain–adsorption–reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field. Tuning the surface strain in multimetallic nanomaterials represents an effective strategy to improve their electrocatalytic properties. In this Review, using the oxygen reduction reaction as a model, the underlying relationship between surface strain and catalytic activity is discussed, along with the introduction, tuning and quantification of strain in nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
THJ123发布了新的文献求助10
1秒前
2秒前
科研通AI5应助wangbq采纳,获得10
2秒前
干饭完成签到,获得积分10
3秒前
leena完成签到,获得积分10
4秒前
6秒前
123完成签到,获得积分10
6秒前
小熊完成签到,获得积分10
8秒前
谨慎的擎宇完成签到,获得积分10
14秒前
科研通AI2S应助kyrie采纳,获得10
16秒前
小熊饼干完成签到,获得积分10
22秒前
qiao应助王志芬采纳,获得10
25秒前
脑洞疼应助优秀藏鸟采纳,获得30
28秒前
30秒前
31秒前
33秒前
34秒前
肖恩发布了新的文献求助10
36秒前
钠钾蹦发布了新的文献求助10
39秒前
aurora完成签到 ,获得积分10
39秒前
nb完成签到,获得积分10
39秒前
活力毛豆完成签到 ,获得积分10
41秒前
袁钰琳完成签到 ,获得积分10
44秒前
JiayanLee完成签到,获得积分10
44秒前
SciGPT应助钠钾蹦采纳,获得10
44秒前
lwl666完成签到,获得积分10
46秒前
Goodenough完成签到 ,获得积分10
46秒前
xiaoE完成签到,获得积分10
47秒前
51秒前
51秒前
51秒前
星星要睡觉啦完成签到,获得积分10
51秒前
none完成签到,获得积分10
52秒前
陈列发布了新的文献求助10
52秒前
53秒前
wy.he应助科研通管家采纳,获得10
54秒前
54秒前
54秒前
Hanzhiding发布了新的文献求助10
54秒前
共享精神应助Steven采纳,获得30
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549