Strain-controlled electrocatalysis on multimetallic nanomaterials

电催化剂 纳米材料 应变工程 材料科学 拉伤 纳米材料基催化剂 纳米晶 纳米技术 纳米颗粒 化学 医学 电化学 电极 光电子学 内科学 物理化学
作者
Mingchuan Luo,Shaojun Guo
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:2 (11) 被引量:717
标识
DOI:10.1038/natrevmats.2017.59
摘要

Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain–adsorption–reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field. Tuning the surface strain in multimetallic nanomaterials represents an effective strategy to improve their electrocatalytic properties. In this Review, using the oxygen reduction reaction as a model, the underlying relationship between surface strain and catalytic activity is discussed, along with the introduction, tuning and quantification of strain in nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
开心匪发布了新的文献求助10
2秒前
2秒前
果冻啦发布了新的文献求助10
3秒前
8秒前
8秒前
活泼铃铛发布了新的文献求助20
9秒前
脑洞疼应助果冻啦采纳,获得10
11秒前
12秒前
lyn发布了新的文献求助10
13秒前
14秒前
嗯嗯嗯发布了新的文献求助10
16秒前
赘婿应助优美的小熊猫采纳,获得10
16秒前
18秒前
nn发布了新的文献求助10
19秒前
Zhang发布了新的文献求助10
19秒前
川柏树发布了新的文献求助10
21秒前
研友_LX2vJZ发布了新的文献求助10
21秒前
动听的薯片关注了科研通微信公众号
21秒前
白问寒发布了新的文献求助10
22秒前
23秒前
23秒前
zcy完成签到,获得积分10
24秒前
今后应助nn采纳,获得10
24秒前
pqq1987pqq发布了新的文献求助30
30秒前
nn完成签到,获得积分10
32秒前
研友_n0Dp5n完成签到,获得积分10
33秒前
35秒前
36秒前
37秒前
38秒前
啊嚯发布了新的文献求助10
39秒前
liv应助猪肉超人菜婴蚊采纳,获得10
39秒前
小耿完成签到 ,获得积分10
39秒前
搜集达人应助苗条的静白采纳,获得30
39秒前
42秒前
Simple发布了新的文献求助10
43秒前
果冻啦发布了新的文献求助10
43秒前
安安发布了新的文献求助10
43秒前
橙子发布了新的文献求助10
44秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423211
求助须知:如何正确求助?哪些是违规求助? 2111984
关于积分的说明 5348068
捐赠科研通 1839497
什么是DOI,文献DOI怎么找? 915686
版权声明 561258
科研通“疑难数据库(出版商)”最低求助积分说明 489747