Spatial as Deep: Spatial CNN for Traffic Scene Understanding

计算机科学 图层(电子) 卷积神经网络 像素 水准点(测量) 人工智能 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 数据库 地图学 地理 哲学 有机化学 化学 语言学
作者
Xingang Pan,Jianping Shi,Ping Luo,Xiaogang Wang,Xiaoou Tang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:32 (1) 被引量:216
标识
DOI:10.1609/aaai.v32i1.12301
摘要

Convolutional neural networks (CNNs) are usually built by stacking convolutional operations layer-by-layer. Although CNN has shown strong capability to extract semantics from raw pixels, its capacity to capture spatial relationships of pixels across rows and columns of an image is not fully explored. These relationships are important to learn semantic objects with strong shape priors but weak appearance coherences, such as traffic lanes, which are often occluded or not even painted on the road surface as shown in Fig. 1 (a). In this paper, we propose Spatial CNN (SCNN), which generalizes traditional deep layer-by-layer convolutions to slice-by-slice convolutions within feature maps, thus enabling message passings between pixels across rows and columns in a layer. Such SCNN is particular suitable for long continuous shape structure or large objects, with strong spatial relationship but less appearance clues, such as traffic lanes, poles, and wall. We apply SCNN on a newly released very challenging traffic lane detection dataset and Cityscapse dataset. The results show that SCNN could learn the spatial relationship for structure output and significantly improves the performance. We show that SCNN outperforms the recurrent neural network (RNN) based ReNet and MRF+CNN (MRFNet) in the lane detection dataset by 8.7% and 4.6% respectively. Moreover, our SCNN won the 1st place on the TuSimple Benchmark Lane Detection Challenge, with an accuracy of 96.53%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助魁梧的涵柏采纳,获得80
刚刚
luanzh发布了新的文献求助10
1秒前
姜括号发布了新的文献求助10
1秒前
直率的皮带完成签到,获得积分10
2秒前
2秒前
2秒前
十月完成签到 ,获得积分10
3秒前
我行我素完成签到 ,获得积分10
3秒前
微笑的映波完成签到,获得积分10
4秒前
hui发布了新的文献求助10
4秒前
KK完成签到,获得积分10
4秒前
cao完成签到 ,获得积分10
4秒前
4秒前
wulixin完成签到,获得积分10
5秒前
快乐战神没烦恼完成签到,获得积分10
6秒前
Lemuel发布了新的文献求助10
6秒前
hyxu678完成签到,获得积分10
6秒前
xiuxiu完成签到 ,获得积分10
6秒前
6秒前
Taylor关注了科研通微信公众号
7秒前
archaea发布了新的文献求助10
7秒前
Juniper完成签到 ,获得积分10
7秒前
殇春秋完成签到,获得积分10
8秒前
直率的宛海完成签到,获得积分10
8秒前
犹豫的宝莹完成签到,获得积分10
8秒前
tramp应助luanzh采纳,获得10
9秒前
可可完成签到,获得积分10
9秒前
小井盖完成签到 ,获得积分10
9秒前
LANGYE发布了新的文献求助10
9秒前
思源应助hui采纳,获得10
9秒前
可爱的函函应助Benjamin采纳,获得10
9秒前
zyj完成签到 ,获得积分10
10秒前
阿曼尼完成签到 ,获得积分10
10秒前
0.5地板砖完成签到,获得积分10
11秒前
北海qy完成签到,获得积分10
11秒前
11秒前
Wang完成签到,获得积分10
11秒前
眇鱼完成签到 ,获得积分10
11秒前
Kunying发布了新的文献求助50
11秒前
Dannerys完成签到 ,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816117
求助须知:如何正确求助?哪些是违规求助? 3359667
关于积分的说明 10403987
捐赠科研通 3077496
什么是DOI,文献DOI怎么找? 1690307
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781