已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RaPtomics: integrating radiomic and pathomic features for predicting recurrence in early stage lung cancer

肺癌 阶段(地层学) 医学 线性判别分析 人工智能 放射科 计算机科学 肿瘤科 生物 古生物学
作者
Xiangxue Wang,Vamsidhar Velcheti,Pranjal Vaidya,Kaustav Bera,Anant Madabhushi,Arjun Khunger,Pradnya D. Patil,Humberto Choi
标识
DOI:10.1117/12.2296646
摘要

Non-small cell lung cancer (NSCLC) is the leading cause of cancer related deaths worldwide. The treatment of choice for early stage NSCLC is surgical resection followed by adjuvant chemotherapy for high risk patients. Currently, the decision to offer chemotherapy is primarily dependent on several clinical and visual radiographic factors as there is a lack of a biomarker which can accurately stratify and predict disease risk in these patients. Computer extracted image features from CT scans (radiomic) and (pathomic) from H&E tissue slides have already shown promising results in predicting recurrence free survival (RFS) in lung cancer patients. This paper presents new radiology-pathology fusion approach (RaPtomics) to combine radiomic and pathomic features for predicting recurrence in early stage NSCLC. Radiomic textural features (Gabor, Haralick, Law, Laplace and CoLlAGe) from within and outside lung nodules on CT scans and intranuclear pathology features (Shape, Cell Cluster Graph and Global Graph Features) were extracted from digitized whole slide H&E tissue images on an initial discovery set of 50 patients. The top most predictive radiomic and pathomic features were then combined and in conjunction with machine learning algorithms were used to predict classifier. The performance of the RaPtomic classifier was evaluated on a training set from the Cleveland Clinic (n=50) and independently validated on images from the publicly available cancer genome atlas (TCGA) dataset (n=43). The RaPtomic prognostic model using Linear Discriminant Analysis (LDA) classifier, in conjunction with two radiomic and two pathomic shape features, significantly predicted 5-year recurrence free survival (RFS) (AUC 0.78; p<0.005) as compared to radiomic (AUC 0.74; p<0.01) and pathomic (AUC 0.67; p<0.05) features alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wend完成签到 ,获得积分10
刚刚
wpz完成签到,获得积分10
1秒前
princip完成签到 ,获得积分10
1秒前
1秒前
一吃一大碗完成签到,获得积分10
1秒前
lz4540发布了新的文献求助10
3秒前
周萌完成签到 ,获得积分10
4秒前
kayee发布了新的文献求助10
5秒前
ycy完成签到,获得积分20
8秒前
8秒前
wxn发布了新的文献求助10
12秒前
yoyofun完成签到,获得积分10
14秒前
15秒前
英姑应助开放冰香采纳,获得20
17秒前
丘比特应助wxn采纳,获得10
19秒前
科研虫发布了新的文献求助10
19秒前
挖掘机完成签到,获得积分10
21秒前
所所应助芳华如梦采纳,获得10
23秒前
赘婿应助uuuiii5678采纳,获得10
25秒前
Haimian完成签到 ,获得积分10
25秒前
一只狗东西完成签到 ,获得积分10
26秒前
今后应助缓慢冷风采纳,获得10
26秒前
27秒前
lz4540完成签到,获得积分10
31秒前
慕青应助nnnd77采纳,获得10
32秒前
cq发布了新的文献求助10
34秒前
Mistletoe完成签到 ,获得积分10
34秒前
34秒前
34秒前
34秒前
35秒前
核桃应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
36秒前
顾矜应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得10
36秒前
乐乐应助科研通管家采纳,获得10
36秒前
Lucas应助科研通管家采纳,获得10
36秒前
完美世界应助科研通管家采纳,获得10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4681196
求助须知:如何正确求助?哪些是违规求助? 4057069
关于积分的说明 12544580
捐赠科研通 3752131
什么是DOI,文献DOI怎么找? 2072232
邀请新用户注册赠送积分活动 1101275
科研通“疑难数据库(出版商)”最低求助积分说明 980663