Streamlining the Histopathological Workflow in Diabetic Kidney Disease with Artificial Intelligence

工作流程 人工智能 计算机科学 周转时间 机器学习 推论 医学 肾脏疾病 动物模型 特征(语言学) 众包 人类疾病 糖尿病肾病 生物信息学 鉴定(生物学) 病理 转化研究 提取器 生物沉积 专家系统 监督学习 一般化 疾病
作者
Christos Matsoukas,Tajana Tesan Tomic,Pernilla Tonelius,Esther Nuñez Durán,Lihuan Liang,Annika Wernerson,Johan Mölne,Robert I. Menzies,Anna B. Granqvist,Pernille B L Hansen,Kevin Smith,Magnus Söderberg
出处
期刊:Journal of The American Society of Nephrology
标识
DOI:10.1681/asn.0000000923
摘要

Background: Assessment of pathology endpoints in animal models of diabetic kidney disease (DKD) is time-consuming and prone to expert bias. Additionally, the sparsity of human kidney biopsy data hinders the development of translational models from animals to humans. Methods: We developed an AI-driven workflow to streamline histopathological assessments in animal models of diabetic nephropathy. Our approach (i) detected glomeruli in whole slide images, (ii) enabled fast expert scoring via an annotation tool, and (iii) automated scoring. By leveraging unlabeled preclinical data for self-supervised learning, we enhanced AI scoring performance, reduced expert bias, and enabled the translation of AI scoring from animal models to human biopsies. To translate AI models from preclinical studies to human biopsies, we introduced a method that adjusted the feature extractor to human-specific features during inference without the need for annotated examples. Results: Our annotation tool streamlined glomerular scoring, reducing turnaround time by 80%. Supervised AI models outperformed expert agreement and further reduced turnaround time by 90%, demonstrating generalization across studies involving both the same and different animal models. Without supervision, the self-supervised model achieved a κ value of 0.78, effectively identifying glomerular changes without guidance. Incorporating self-supervised learning into supervised training improved performance to κ = 0.84 and reduced bias compared to individual experts (P < 0.001). Our translational approach achieved a κ value of 0.63 on human glomeruli, even though the model was trained exclusively on mouse glomeruli scores, reducing the translational gap by 45%. Conclusions: In this study, we accelerated and enhanced pathology readouts in a real-life pharmaceutical industry setting. We show that AI-assisted scoring reduced pathologists' workload and expedited study assessments. Self-supervised learning captured intrinsic properties of kidney morphology without expert annotation, reduced expert bias and translational discrepancies, greatly facilitating translational activities in drug development for patients with DKD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
快乐小子完成签到,获得积分10
1秒前
2秒前
哎哟我去发布了新的文献求助10
3秒前
王永明发布了新的文献求助10
3秒前
朴素的士晋完成签到 ,获得积分10
3秒前
离蒲完成签到 ,获得积分10
4秒前
4秒前
阿文完成签到 ,获得积分10
4秒前
5秒前
peng完成签到 ,获得积分10
5秒前
小权拳的权完成签到,获得积分10
5秒前
guoxt完成签到 ,获得积分10
5秒前
NexusExplorer应助berg采纳,获得10
5秒前
隐形忆南发布了新的文献求助10
6秒前
llll发布了新的文献求助10
7秒前
烟花应助鲤鱼平蓝采纳,获得10
7秒前
BBV发布了新的文献求助10
7秒前
陈洪波完成签到,获得积分10
8秒前
111完成签到,获得积分20
8秒前
宇心完成签到,获得积分10
9秒前
小潘同学完成签到,获得积分10
10秒前
10秒前
慕青应助llll采纳,获得10
11秒前
开放映冬完成签到,获得积分10
11秒前
11秒前
frank完成签到,获得积分10
12秒前
12秒前
隐形曼青应助1238125446采纳,获得10
12秒前
周周发布了新的文献求助10
12秒前
斯文败类应助哎哟我去采纳,获得10
12秒前
所所应助高兴的凝旋采纳,获得10
13秒前
13秒前
14秒前
liu完成签到 ,获得积分10
15秒前
金小豪发布了新的文献求助30
15秒前
清竹完成签到,获得积分10
15秒前
16秒前
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213464
求助须知:如何正确求助?哪些是违规求助? 4389271
关于积分的说明 13666472
捐赠科研通 4250301
什么是DOI,文献DOI怎么找? 2331987
邀请新用户注册赠送积分活动 1329688
关于科研通互助平台的介绍 1283255