类胰蛋白酶
缺氧(环境)
血小板源性生长因子受体
胚胎血管重塑
医学
肺动脉高压
内分泌学
发病机制
血小板衍生生长因子
内科学
肥大细胞
血管平滑肌
甲磺酸伊马替尼
生长因子
受体
生物
化学
癌症研究
免疫学
伊马替尼
平滑肌
髓系白血病
氧气
有机化学
作者
Grażyna Kwapiszewska,Philipp Markart,Bhola K. Dahal,Baktybek Kojonazarov,Leigh M. Marsh,Ralph T. Schermuly,Christian Taube,Andreas Meinhardt,Hossein A. Ghofrani,Martin Steinhoff,Werner Seeger,Klaus T. Preissner,Andrea Olschewski,Norbert Weißmann,Małgorzata Wygrecka
出处
期刊:Circulation Research
[Lippincott Williams & Wilkins]
日期:2012-03-30
卷期号:110 (9): 1179-1191
被引量:62
标识
DOI:10.1161/circresaha.111.257568
摘要
A hallmark of the vascular remodeling process underlying pulmonary hypertension (PH) is the aberrant proliferation and migration of pulmonary arterial smooth muscle cells (PASMC). Accumulating evidence suggests that mast cell mediators play a role in the pathogenesis of PH.In the present study we investigated the importance of protease-activated receptor (PAR)-2 and its ligand mast cell tryptase in the development of PH.Our results revealed strong increase in PAR-2 and tryptase expression in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline (MCT)-treated rats. Elevated tryptase levels were also detected in plasma samples from IPAH patients. Hypoxia and platelet-derived growth factor (PDGF)-BB upregulated PAR-2 expression in PASMC. This effect was reversed by HIF (hypoxia inducible factor)-1α depletion, PDGF-BB neutralizing antibody, or the PDGF-BB receptor antagonist Imatinib. Attenuation of PAR-2 expression was also observed in smooth muscle cells of pulmonary vessels of mice exposed to hypoxia and rats challenged with MCT in response to Imatinib treatment. Tryptase induced PASMC proliferation and migration as well as enhanced synthesis of fibronectin and matrix metalloproteinase-2 in a PAR-2- and ERK1/2-dependent manner, suggesting that PAR-2-dependent signaling contributes to vascular remodeling by various mechanisms. Furthermore, PAR-2(-/-) mice were protected against hypoxia-induced PH, and PAR-2 antagonist application reversed established PH in the hypoxia mouse model.Our study identified a novel role of PAR-2 in vascular remodeling in the lung. Interference with this pathway may offer novel therapeutic options for the treatment of PH.
科研通智能强力驱动
Strongly Powered by AbleSci AI