三乙烯四胺
链脲佐菌素
糖尿病
医学
代谢组学
药理学
内科学
内分泌学
生物信息学
化学
生物
有机化学
作者
Marta Ugarte,Marie Brown,Katherine A. Hollywood,Garth J. S. Cooper,Paul N. Bishop,Warwick B. Dunn
摘要
Abstract Background The prevalence, and associated healthcare burden, of diabetes mellitus is increasing worldwide. Mortality and morbidity are associated with diabetic complications in multiple organs and tissues, including the eye, kidney and cardiovascular system, and new therapeutics to treat these complications are required urgently. Triethylenetetramine (TETA) is one such experimental therapeutic that acts to chelate excess copper (II) in diabetic tissues and reduce oxidative stress and cellular damage. Methods Here we have performed two independent metabolomic studies of serum to assess the suitability of the streptozotocin (STZ)-induced rat model for studying diabetes and to define metabolite-related changes associated with TETA treatment. Ultraperformance liquid chromatography-mass spectrometry studies of serum from non-diabetic/untreated, non-diabetic/TETA-treated, STZ-induced diabetic/untreated and STZ-induced diabetic/TETA-treated rats were performed followed by univariate and multivariate analysis of data. Results Multiple metabolic changes related to STZ-induced diabetes, some of which have been reported previously in other animal and human studies, were observed, including changes in amino acid, fatty acid, glycerophospholipid and bile acid metabolism. Correlation analysis suggested that treatment with TETA led to a reversal of diabetes-associated changes in bile acid, fatty acid, steroid, sphingolipid and glycerophospholipid metabolism and proteolysis. Conclusions Metabolomic studies have shown that the STZ-induced rat model of diabetes is an appropriate model system to undertake research into diabetes and potential therapies as several metabolic changes observed in humans and other animal models were also observed in this study. Metabolomics has also identified several biological processes and metabolic pathways implicated in diabetic complications and reversed following treatment with the experimental therapeutic TETA.
科研通智能强力驱动
Strongly Powered by AbleSci AI