A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns

计算机科学 卷积神经网络 人工智能 连接体 模式识别(心理学) 精神分裂症(面向对象编程) 领域(数学分析) 功能连接 脑电图 神经科学 心理学 数学 数学分析 程序设计语言
作者
Chun-Ren Phang,Fuad Noman,Hadri Hussain,Chee-Ming Ting,Hernando Ombao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1333-1343 被引量:142
标识
DOI:10.1109/jbhi.2019.2941222
摘要

We exploit altered patterns in brain functional connectivity as features for automatic discriminative analysis of neuropsychiatric patients. Deep learning methods have been introduced to functional network classification only very recently for fMRI, and the proposed architectures essentially focused on a single type of connectivity measure. We propose a deep convolutional neural network (CNN) framework for classification of electroencephalogram (EEG)-derived brain connectome in schizophrenia (SZ). To capture complementary aspects of disrupted connectivity in SZ, we explore combination of various connectivity features consisting of time and frequency-domain metrics of effective connectivity based on vector autoregressive model and partial directed coherence, and complex network measures of network topology. We design a novel multi-domain connectome CNN (MDC-CNN) based on a parallel ensemble of 1D and 2D CNNs to integrate the features from various domains and dimensions using different fusion strategies. Hierarchical latent representations learned by the multiple convolutional layers from EEG connectivity reveal apparent group differences between SZ and healthy controls (HC). Results on a large resting-state EEG dataset show that the proposed CNNs significantly outperform traditional support vector machine classifiers. The MDC-CNN with combined connectivity features further improves performance over single-domain CNNs using individual features, achieving remarkable accuracy of $93.06\%$ with a decision-level fusion. The proposed MDC-CNN by integrating information from diverse brain connectivity descriptors is able to accurately discriminate SZ from HC. The new framework is potentially useful for developing diagnostic tools for SZ and other disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Audery完成签到 ,获得积分10
刚刚
1秒前
充电宝应助吃花生酱的猫采纳,获得10
1秒前
4秒前
bofu发布了新的文献求助10
6秒前
ljz发布了新的文献求助10
6秒前
8秒前
9秒前
10秒前
10秒前
积极如天完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
WW完成签到 ,获得积分10
12秒前
bofu发布了新的文献求助10
13秒前
叮叮叮发布了新的文献求助10
13秒前
文静秋双发布了新的文献求助10
14秒前
洁净的幼珊完成签到,获得积分10
16秒前
张小北发布了新的文献求助10
17秒前
Chaos完成签到 ,获得积分10
21秒前
21秒前
22秒前
qian完成签到 ,获得积分10
22秒前
23秒前
上官若男应助ljz采纳,获得10
23秒前
华仔应助花椒泡茶采纳,获得10
23秒前
研友_nvggxZ完成签到,获得积分20
25秒前
YanK发布了新的文献求助10
26秒前
空空发布了新的文献求助10
26秒前
26秒前
27秒前
花样年华完成签到,获得积分0
28秒前
求文献完成签到,获得积分10
29秒前
所所应助YanK采纳,获得10
29秒前
pan完成签到,获得积分10
30秒前
Remember完成签到 ,获得积分10
30秒前
wonwojo发布了新的文献求助10
31秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815163
求助须知:如何正确求助?哪些是违规求助? 3359128
关于积分的说明 10400112
捐赠科研通 3076704
什么是DOI,文献DOI怎么找? 1689971
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767673