亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal and Multi-Model Deep Fusion for Fine Classification of Regional Complex Landscape Areas Using ZiYuan-3 Imagery

人工智能 Softmax函数 计算机科学 深信不疑网络 深度学习 随机森林 支持向量机 模式识别(心理学) 机器学习 试验装置
作者
Xianju Li,Zhuang Tang,Weitao Chen,Lizhe Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:11 (22): 2716-2716 被引量:31
标识
DOI:10.3390/rs11222716
摘要

Land cover classification (LCC) of complex landscapes is attractive to the remote sensing community but poses great challenges. In complex open pit mining and agricultural development landscapes (CMALs), the landscape-specific characteristics limit the accuracy of LCC. The combination of traditional feature engineering and machine learning algorithms (MLAs) is not sufficient for LCC in CMALs. Deep belief network (DBN) methods achieved success in some remote sensing applications because of their excellent unsupervised learning ability in feature extraction. The usability of DBN has not been investigated in terms of LCC of complex landscapes and integrating multimodal inputs. A novel multimodal and multi-model deep fusion strategy based on DBN was developed and tested for fine LCC (FLCC) of CMALs in a 109.4 km2 area of Wuhan City, China. First, low-level and multimodal spectral–spatial and topographic features derived from ZiYuan-3 imagery were extracted and fused. The features were then input into a DBN for deep feature learning. The developed features were fed to random forest and support vector machine (SVM) algorithms for classification. Experiments were conducted that compared the deep features with the softmax function and low-level features with MLAs. Five groups of training, validation, and test sets were performed with some spatial auto-correlations. A spatially independent test set and generalized McNemar tests were also employed to assess the accuracy. The fused model of DBN-SVM achieved overall accuracies (OAs) of 94.74% ± 0.35% and 81.14% in FLCC and LCC, respectively, which significantly outperformed almost all other models. From this model, only three of the twenty land covers achieved OAs below 90%. In general, the developed model can contribute to FLCC and LCC in CMALs, and more deep learning algorithm-based models should be investigated in future for the application of FLCC and LCC in complex landscapes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meow完成签到 ,获得积分10
2秒前
dovejingling完成签到,获得积分10
3秒前
上善若水完成签到 ,获得积分10
10秒前
26秒前
yr发布了新的文献求助30
29秒前
moiumuio完成签到,获得积分10
39秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
顺子完成签到 ,获得积分10
40秒前
1分钟前
小羊打嗝发布了新的文献求助10
1分钟前
高高亦竹发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
积极的花卷完成签到,获得积分20
1分钟前
HM发布了新的文献求助10
1分钟前
高高亦竹完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Owen应助HM采纳,获得10
1分钟前
科研通AI6应助小羊打嗝采纳,获得30
1分钟前
1分钟前
迷人的帅哥完成签到,获得积分10
1分钟前
1分钟前
myg123完成签到 ,获得积分10
1分钟前
af发布了新的文献求助10
2分钟前
pinklay完成签到 ,获得积分10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
18746005898完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
逮劳完成签到 ,获得积分10
3分钟前
3分钟前
苏烟完成签到 ,获得积分10
3分钟前
幽默的乐双完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422529
求助须知:如何正确求助?哪些是违规求助? 4537396
关于积分的说明 14157441
捐赠科研通 4454018
什么是DOI,文献DOI怎么找? 2443173
邀请新用户注册赠送积分活动 1434482
关于科研通互助平台的介绍 1411612