Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning

蠕动 材料科学 高温合金 微观结构 合金 机器学习 计算机科学 冶金
作者
Yue Liu,Junming Wu,Zhichao Wang,Xiao‐Gang Lu,Maxim Avdeev,Siqi Shi,Chong‐Yu Wang,Tao Yu
出处
期刊:Acta Materialia [Elsevier]
卷期号:195: 454-467 被引量:205
标识
DOI:10.1016/j.actamat.2020.05.001
摘要

Creep rupture life is a key material parameter for service life and mechanical properties of Ni-based single crystal superalloy materials. Therefore, it is of much practical significance to accurately and efficiently predict creep life. Here, we develop a divide-and-conquer self-adaptive (DCSA) learning method incorporating multiple material descriptors for rational and accelerated prediction of the creep rupture life. We characterize a high-quality creep dataset of 266 alloy samples with such features as alloy composition, test temperature, test stress, and heat treatment process. In addition, five microstructural parameters related to creep process, including stacking fault energy, lattice parameter, mole fraction of the γ' phase, diffusion coefficient and shear modulus, are calculated and introduced by the CALPHAD (CALculation of PHAse Diagrams) method and basic materials structure-property relationships, that enables us to reveal the effect of microstructure on creep properties. The machine learning explorations conducted on the creep dataset demonstrate the potential of the approach to achieve higher prediction accuracy with RMSE, MAPE and R2 of 0.3839, 0.0003 and 0.9176 than five alternative state-of-the-art machine learning models. On the newly collected 8 alloy samples, the error between the predicted creep life value and the experimental measured value is within the acceptable range (6.4486 h–40.7159 h), further confirming the validity of our DCSA model. Essentially, our method can establish accurate structure-property relationship mapping for the creep rupture life in a faster and cheaper manner than experiments and is expected to serve for inverse design of alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
理想三寻发布了新的文献求助10
2秒前
小马甲应助科研rain采纳,获得10
3秒前
吉良吉影发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
loverdose发布了新的文献求助10
4秒前
脑洞疼应助Aiden采纳,获得30
4秒前
华仔应助ala采纳,获得10
5秒前
5秒前
fei应助药翁的左手采纳,获得20
5秒前
5秒前
乐乐应助asdaas采纳,获得10
5秒前
6秒前
Hepper完成签到,获得积分10
6秒前
1234完成签到,获得积分20
7秒前
嘻嘻鹿哈发布了新的文献求助10
7秒前
7秒前
7秒前
跳跃的海雪完成签到,获得积分20
7秒前
隐形曼青应助于忠波采纳,获得10
7秒前
AI发布了新的文献求助10
7秒前
NexusExplorer应助吉良吉影采纳,获得10
7秒前
爆米花应助11号迪西馅饼采纳,获得10
8秒前
冬至完成签到,获得积分10
8秒前
Kai完成签到,获得积分10
8秒前
8秒前
bkagyin应助舒舒采纳,获得10
8秒前
深情安青应助任伟超采纳,获得10
8秒前
fufu6发布了新的文献求助10
8秒前
赘婿应助Reine采纳,获得10
9秒前
善学以致用应助Stella采纳,获得50
9秒前
sunshine完成签到,获得积分10
9秒前
10秒前
科目三应助初遇之时最暖采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479054
求助须知:如何正确求助?哪些是违规求助? 4580717
关于积分的说明 14376424
捐赠科研通 4509202
什么是DOI,文献DOI怎么找? 2471246
邀请新用户注册赠送积分活动 1457726
关于科研通互助平台的介绍 1431617