Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning

结直肠癌 随机森林 分级(工程) 肿瘤异质性 基因表达谱 医学 精密医学 人工智能 病理 计算生物学 肿瘤科 内科学 生物信息学 癌症 生物 基因表达 基因 计算机科学 遗传学 生态学
作者
Korsuk Sirinukunwattana,Enric Domingo,Susan D. Richman,Keara L. Redmond,Andrew Blake,Clare Verrill,Simon J. Leedham,Aikaterini Chatzipli,Claire Hardy,Celina Whalley,Chieh‐Hsi Wu,Andrew D. Beggs,Ultan McDermott,Philip D. Dunne,Angela Meade,Steven M. Walker,Graeme I. Murray,Leslie Samuel,Michel Seymour,Ian Tomlinson
出处
期刊:Gut [BMJ]
卷期号:70 (3): 544-554 被引量:198
标识
DOI:10.1136/gutjnl-2019-319866
摘要

Objective Complex phenotypes captured on histological slides represent the biological processes at play in individual cancers, but the link to underlying molecular classification has not been clarified or systematised. In colorectal cancer (CRC), histological grading is a poor predictor of disease progression, and consensus molecular subtypes (CMSs) cannot be distinguished without gene expression profiling. We hypothesise that image analysis is a cost-effective tool to associate complex features of tissue organisation with molecular and outcome data and to resolve unclassifiable or heterogeneous cases. In this study, we present an image-based approach to predict CRC CMS from standard H&E sections using deep learning. Design Training and evaluation of a neural network were performed using a total of n=1206 tissue sections with comprehensive multi-omic data from three independent datasets (training on FOCUS trial, n=278 patients; test on rectal cancer biopsies, GRAMPIAN cohort, n=144 patients; and The Cancer Genome Atlas (TCGA), n=430 patients). Ground truth CMS calls were ascertained by matching random forest and single sample predictions from CMS classifier. Results Image-based CMS (imCMS) accurately classified slides in unseen datasets from TCGA (n=431 slides, AUC)=0.84) and rectal cancer biopsies (n=265 slides, AUC=0.85). imCMS spatially resolved intratumoural heterogeneity and provided secondary calls correlating with bioinformatic prediction from molecular data. imCMS classified samples previously unclassifiable by RNA expression profiling, reproduced the expected correlations with genomic and epigenetic alterations and showed similar prognostic associations as transcriptomic CMS. Conclusion This study shows that a prediction of RNA expression classifiers can be made from H&E images, opening the door to simple, cheap and reliable biological stratification within routine workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mint发布了新的文献求助10
1秒前
xiaohu完成签到 ,获得积分10
1秒前
梦里虾米完成签到,获得积分10
2秒前
xzm完成签到,获得积分10
2秒前
3秒前
记录者完成签到,获得积分10
3秒前
来日方长完成签到,获得积分10
4秒前
璐璐完成签到,获得积分10
4秒前
葛怀锐完成签到 ,获得积分10
4秒前
5秒前
SYX完成签到,获得积分10
5秒前
guojingjing完成签到,获得积分10
5秒前
我叫小小孙呀完成签到,获得积分10
6秒前
踏实半烟发布了新的文献求助10
6秒前
6秒前
慕青应助称心寒松采纳,获得10
7秒前
我是哈哈哈哈完成签到,获得积分10
7秒前
花花发布了新的文献求助10
8秒前
大个应助小田瘦了嘛采纳,获得10
8秒前
lll完成签到,获得积分10
8秒前
lll完成签到,获得积分10
8秒前
9秒前
希望天下0贩的0应助wind采纳,获得10
9秒前
9秒前
探探发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
烟花应助小柯采纳,获得10
10秒前
11秒前
田様应助gwh120104采纳,获得10
11秒前
研友_VZG7GZ应助lc采纳,获得10
11秒前
大个应助whq531608采纳,获得10
11秒前
机智的皮皮虾完成签到,获得积分10
12秒前
顾矜应助读书的时候采纳,获得10
13秒前
jzhou65完成签到,获得积分10
13秒前
psj完成签到,获得积分10
13秒前
核桃应助滑腻腻的小鱼采纳,获得10
13秒前
烟花应助左彦采纳,获得10
13秒前
13秒前
ECUST发布了新的文献求助10
13秒前
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092873
求助须知:如何正确求助?哪些是违规求助? 3631715
关于积分的说明 11510325
捐赠科研通 3342481
什么是DOI,文献DOI怎么找? 1837209
邀请新用户注册赠送积分活动 904959
科研通“疑难数据库(出版商)”最低求助积分说明 822738