国家(计算机科学)
意外事故
计算机科学
资源(消歧)
力矩(物理)
控制(管理)
航天器
中心(范畴论)
运筹学
点(几何)
估计
应急计划
人工智能
工程类
系统工程
数学
算法
航空航天工程
计算机安全
化学
经典力学
哲学
物理
几何学
语言学
计算机网络
结晶学
作者
Natalia Bakhtadze,Denis Elpashev
出处
期刊:IOP conference series
[IOP Publishing]
日期:2020-11-01
卷期号:563 (1): 012013-012013
被引量:1
标识
DOI:10.1088/1755-1315/563/1/012013
摘要
Abstract The paper presents the concept of on-line estimating the state of the Mission Control Center resources and algorithms for forecasting of contingencies. Resource state prediction methods based on the development of a machine learning techniques called association rules are presented. Using this method, the detection of such parameters and their values, the appearance of which, at some point in time, affects the probability of a certain state of the system at another moment in time, and in particular, the occurrence of an emergency. The results of real case studies and specialist interface fragments are presented. System development options are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI