Knee Point-Based Imbalanced Transfer Learning for Dynamic Multiobjective Optimization

学习迁移 计算机科学 最优化问题 数学优化 人工智能 多目标优化 人口 点(几何) 质量(理念) 机器学习 算法 数学 认识论 哲学 社会学 人口学 几何学
作者
Min Jiang,Zhenzhong Wang,Haokai Hong,Gary G. Yen
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 117-129 被引量:204
标识
DOI:10.1109/tevc.2020.3004027
摘要

Dynamic multiobjective optimization problems (DMOPs) are optimization problems with multiple conflicting optimization objectives, and these objectives change over time. Transfer learning-based approaches have been proven to be promising; however, a slow solving speed is one of the main obstacles preventing such methods from solving real-world problems. One of the reasons for the slow running speed is that low-quality individuals occupy a large amount of computing resources, and these individuals may lead to negative transfer. Combining high-quality individuals, such as knee points, with transfer learning is a feasible solution to this problem. However, the problem with this idea is that the number of high-quality individuals is often very small, so it is difficult to acquire substantial improvements using conventional transfer learning methods. In this article, we propose a knee point-based transfer learning method, called KT-DMOEA, for solving DMOPs. In the proposed method, a trend prediction model (TPM) is developed for producing the estimated knee points. Then, an imbalance transfer learning method is proposed to generate a high-quality initial population by using these estimated knee points. The advantage of this approach is that the seamless integration of a small number of high-quality individuals and the imbalance transfer learning technique can greatly improve the computational efficiency while maintaining the quality of the solution. The experimental results and performance comparisons with some chosen state-of-the-art algorithms demonstrate that the proposed design is capable of significantly improving the performance of dynamic optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weihe完成签到,获得积分10
刚刚
222发布了新的文献求助30
1秒前
1秒前
gbr0519发布了新的文献求助10
2秒前
阿鲁发布了新的文献求助10
2秒前
活泼水桃发布了新的文献求助10
3秒前
言清风完成签到 ,获得积分10
3秒前
5秒前
hanyuguo发布了新的文献求助30
5秒前
5秒前
SciGPT应助橙陈陈采纳,获得10
5秒前
张wx_100发布了新的文献求助10
5秒前
思源应助贾方硕采纳,获得10
6秒前
6秒前
sleepingfish应助Yara.H采纳,获得20
6秒前
6秒前
6秒前
活泼若烟发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
113312完成签到,获得积分20
9秒前
brian0326发布了新的文献求助10
9秒前
10秒前
10秒前
跳跃的愫发布了新的文献求助10
10秒前
11秒前
wangtian完成签到,获得积分10
11秒前
善学以致用应助杨佳燕采纳,获得10
11秒前
11秒前
Jack发布了新的文献求助10
12秒前
Amagi发布了新的文献求助10
12秒前
反季完成签到 ,获得积分10
12秒前
风中冰香应助sq采纳,获得10
13秒前
充电宝应助anting采纳,获得10
13秒前
FuZh发布了新的文献求助10
13秒前
万能图书馆应助gbr0519采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285417
求助须知:如何正确求助?哪些是违规求助? 4438512
关于积分的说明 13817541
捐赠科研通 4319833
什么是DOI,文献DOI怎么找? 2371192
邀请新用户注册赠送积分活动 1366728
关于科研通互助平台的介绍 1330185