钙显像
计算机科学
人工智能
推论
Spike(软件开发)
降噪
模式识别(心理学)
监督学习
深度学习
钙
人工神经网络
噪音(视频)
机器学习
图像(数学)
化学
软件工程
有机化学
作者
Xinyang Li,Guoxun Zhang,Jiamin Wu,Yuanlong Zhang,Zhifeng Zhao,Xing Lin,Hui Qiao,Hao Xie,Haoqian Wang,Lu Fang,Qionghai Dai
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2021-08-16
卷期号:18 (11): 1395-1400
被引量:123
标识
DOI:10.1038/s41592-021-01225-0
摘要
Calcium imaging has transformed neuroscience research by providing a methodology for monitoring the activity of neural circuits with single-cell resolution. However, calcium imaging is inherently susceptible to detection noise, especially when imaging with high frame rate or under low excitation dosage. Here we developed DeepCAD, a self-supervised deep-learning method for spatiotemporal enhancement of calcium imaging data that does not require any high signal-to-noise ratio (SNR) observations. DeepCAD suppresses detection noise and improves the SNR more than tenfold, which reinforces the accuracy of neuron extraction and spike inference and facilitates the functional analysis of neural circuits.
科研通智能强力驱动
Strongly Powered by AbleSci AI