Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following

马鞍 特征向量 计算机科学 水准点(测量) 鞍点 算法 能量(信号处理) 离散化 灵活性(工程) 图像(数学) 点(几何) 攀登 集合(抽象数据类型) 数学 几何学 数学优化 人工智能 数学分析 物理 统计 结构工程 地质学 大地测量学 量子力学 工程类 程序设计语言
作者
Vilhjálmur Ásgeirsson,Benedikt O. Birgisson,Ragnar Björnsson,Ute Becker,Frank Neese,Christoph Riplinger,Hannes Jónsson
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:17 (8): 4929-4945 被引量:306
标识
DOI:10.1021/acs.jctc.1c00462
摘要

The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
咚咚咚发布了新的文献求助10
3秒前
江河发布了新的文献求助10
4秒前
Ava应助LXY采纳,获得10
4秒前
爆米花应助於傲松采纳,获得10
4秒前
Lucas应助huizui采纳,获得10
5秒前
coco发布了新的文献求助10
6秒前
在水一方应助坦率灵槐采纳,获得10
8秒前
10秒前
ada完成签到,获得积分10
12秒前
清爽的雁丝完成签到,获得积分10
13秒前
ada发布了新的文献求助10
15秒前
18秒前
爆米花应助QQ采纳,获得10
18秒前
许个愿吧完成签到,获得积分10
18秒前
8R60d8应助wang采纳,获得10
19秒前
雾散发布了新的文献求助10
21秒前
柠木完成签到 ,获得积分10
21秒前
22秒前
chiien完成签到 ,获得积分10
23秒前
李健应助dd采纳,获得10
23秒前
大聪明完成签到,获得积分20
23秒前
喜悦豌豆完成签到,获得积分20
25秒前
LZJ完成签到,获得积分10
29秒前
於傲松发布了新的文献求助10
29秒前
TangQQ发布了新的文献求助10
35秒前
36秒前
37秒前
大聪明发布了新的文献求助50
37秒前
shundr发布了新的文献求助60
40秒前
JCTera完成签到,获得积分10
41秒前
科研通AI5应助风趣问蕊采纳,获得10
42秒前
45秒前
长情的语风完成签到 ,获得积分10
47秒前
黄文龙完成签到 ,获得积分10
48秒前
W1ll完成签到,获得积分10
49秒前
TangQQ完成签到,获得积分20
49秒前
答辩发布了新的文献求助10
50秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5046229
求助须知:如何正确求助?哪些是违规求助? 4275421
关于积分的说明 13327158
捐赠科研通 4089393
什么是DOI,文献DOI怎么找? 2237723
邀请新用户注册赠送积分活动 1244809
关于科研通互助平台的介绍 1172947