亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SpecView: Malware Spectrum Visualization Framework With Singular Spectrum Transformation

恶意软件 计算机科学 可视化 混淆 人工智能 加密 隐病毒学 数据挖掘 机器学习 模式识别(心理学) 计算机安全
作者
Jian Yu,Yuewang He,Qiben Yan,Xiangui Kang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 5093-5107 被引量:13
标识
DOI:10.1109/tifs.2021.3124725
摘要

With the rapid development of automation tools including polymorphic and metamorphic engines, generic packers, and genetic programming, many variants of malware have emerged, which pose a significant threat to the Internet security. To effectively detect malware variants, researchers have developed visualization-based approaches that can visualize malware adaptations for in-depth malware analysis. However, most existing visualization approaches rely on the binary image of a malware sample, which fail to provide an effective texture feature representation and thus often result in low efficiency in coping with challenging malware samples. In this paper, we propose SpecView , a malware spectrum visualization framework with singular spectrum transformation. SpecView converts malware binary code into one-dimensional time series spectrum data, and leverages the singular spectrum transformation method to obtain the structural changes preserved in the time series spectrum data. Then, we utilize the particle swarm optimization algorithm to optimize the singular spectrum transformation performance in SpecView. We apply SpecView in the task of malware classification. Extensive experimental results show that SpecView is effective and efficient in malware classification on the Malimg, Malheur, Drebin, and PRAGuard Malgenome Class Encryption datasets, with classification accuracy exceeding 99%, and it can effectively identify malware variants that use evasive techniques such as packer and encryption obfuscation. The proposed method outperforms the state-of-the-art methods on all datasets and the classification accuracy reaches 100% for 5 malware families packed by the UPX packer on the Malimg dataset, as well as 9 malware families that use Class Encryption obfuscation techniques on the PRAGuard Malgenome Class Encryption datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助认真道消采纳,获得10
8秒前
10秒前
派大星完成签到,获得积分10
16秒前
zzhang发布了新的文献求助10
17秒前
今后应助清修采纳,获得10
19秒前
22秒前
24秒前
Sze发布了新的文献求助10
28秒前
29秒前
45秒前
Sze关注了科研通微信公众号
48秒前
清修发布了新的文献求助10
51秒前
1分钟前
李健应助tigerli采纳,获得10
1分钟前
认真道消发布了新的文献求助10
1分钟前
爆米花应助辛勤的小海豚采纳,获得10
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
1分钟前
zw完成签到,获得积分20
1分钟前
情怀应助zw采纳,获得10
1分钟前
1分钟前
morena发布了新的文献求助10
2分钟前
HEIKU应助Marciu33采纳,获得10
2分钟前
2分钟前
tigerli发布了新的文献求助10
2分钟前
影子a完成签到,获得积分10
2分钟前
tigerli完成签到,获得积分10
2分钟前
认真道消完成签到,获得积分20
2分钟前
lovelife完成签到,获得积分10
2分钟前
11发布了新的文献求助10
2分钟前
3分钟前
ytrewq完成签到 ,获得积分10
3分钟前
3分钟前
kbcbwb2002完成签到,获得积分10
3分钟前
bjx发布了新的文献求助10
3分钟前
wewewew完成签到,获得积分20
3分钟前
bjx完成签到,获得积分20
3分钟前
FashionBoy应助bjx采纳,获得10
3分钟前
4分钟前
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244140
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483