Solid–Liquid–Vapor Triphase Gel

气凝胶 材料科学 化学工程 纳米技术 水蒸气 化学 有机化学 工程类
作者
Jinpei Wang,Jin Wang,Zhizhi Sheng,Ran Du,Lifeng Yan,Xuetong Zhang
出处
期刊:Langmuir [American Chemical Society]
卷期号:37 (45): 13501-13511 被引量:4
标识
DOI:10.1021/acs.langmuir.1c02333
摘要

Gels are soft functional materials with solid networks and open pores filled with solvents (for wet gels) or air (for aerogels), displaying broad applications in tissue engineering, catalysis, environmental remediation, energy storage, etc. However, currently known gels feature only a single (either solid-liquid or solid-vapor) interface, largely limiting their application territories. Therefore, it is both fundamentally intriguing and practically significant to develop conceptually new gel materials that possess solid-liquid-vapor multiple interfaces. Herein, we demonstrate a unique solid-liquid-vapor triphase gel, named as aerohydrogel, by gelling of a poly(vinyl alcohol) aqueous solution with glutaraldehyde in the presence of superhydrophobic silica aerogel microparticles. Owing to its continuous solid, liquid, and vapor phases, the resultant aerohydrogel simultaneously displays solid-liquid, solid-vapor, and liquid-vapor interfaces, leading to excellent properties including tunable density (down to 0.43 g·cm-3), considerable hydrophobicity, and excellent elasticity (compressive ratio of up to 80%). As a proof-of-concept application, the aerohydrogel exhibits a higher evaporative cooling efficiency than its hydrogel counterpart and a better cooling capability than the commercial phase change cooling film, respectively, showing promising performance in cooling various devices. Moreover, the resulting aerohydrogel could be facilely tailored with specific (e.g., magnetic) properties for emerging applications such as solar steam generation. This work extends biphase gel (hydrogel or aerogel) to solid-liquid-vapor triphase gel, as well as provides a promising strategy for designing more aerohydrogels serving as soft functional materials for applications in various emerging fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助安好采纳,获得10
2秒前
我的影帝先生完成签到 ,获得积分0
2秒前
4秒前
NexusExplorer应助LOVE17采纳,获得10
5秒前
ff完成签到,获得积分10
6秒前
9秒前
平常翠芙完成签到,获得积分20
10秒前
七七发布了新的文献求助10
11秒前
喵了个喵咪咪完成签到 ,获得积分10
11秒前
15秒前
一切顺利发布了新的文献求助10
16秒前
19秒前
kyt发布了新的文献求助10
21秒前
一条咸鱼发布了新的文献求助10
23秒前
一切顺利完成签到,获得积分10
27秒前
秋雪瑶应助一条咸鱼采纳,获得10
27秒前
爱学习爱劳动完成签到,获得积分10
30秒前
Xnn完成签到,获得积分10
31秒前
Lucas应助kyt采纳,获得10
31秒前
dpp发布了新的文献求助10
32秒前
王昱旻完成签到,获得积分10
35秒前
drunkprogrammer完成签到,获得积分10
36秒前
kakafan发布了新的文献求助10
37秒前
39秒前
Hello应助科研通管家采纳,获得10
39秒前
39秒前
共享精神应助科研通管家采纳,获得10
39秒前
shinysparrow应助科研通管家采纳,获得10
39秒前
39秒前
dpp完成签到,获得积分10
40秒前
兔子先生发布了新的文献求助10
42秒前
CaiCai完成签到 ,获得积分10
42秒前
kakafan完成签到,获得积分10
45秒前
秋雪瑶应助Hayat采纳,获得20
46秒前
随性i完成签到,获得积分10
47秒前
48秒前
爆米花应助落枫采纳,获得10
50秒前
星辰完成签到 ,获得积分10
50秒前
51秒前
ljj001ljj发布了新的文献求助10
54秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 1500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
india-NATO Dialogue: Addressing International Security and Regional Challenges 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2469874
求助须知:如何正确求助?哪些是违规求助? 2136990
关于积分的说明 5445019
捐赠科研通 1861323
什么是DOI,文献DOI怎么找? 925714
版权声明 562721
科研通“疑难数据库(出版商)”最低求助积分说明 495151