已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-attention multi-branch network for fundus diseases classification using SLO images

计算机科学 保险丝(电气) 人工智能 棱锥(几何) 联营 眼底(子宫) 特征(语言学) 模式识别(心理学) 光学(聚焦) 深度学习 计算机视觉 数学 医学 物理 几何学 光学 电气工程 眼科 工程类 语言学 哲学
作者
Hai Xie,Xianlu Zeng,Haijun Lei,Jie Du,Jiantao Wang,Guoming Zhang,Jiuwen Cao,Tianfu Wang,Baiying Lei
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:71: 102031-102031 被引量:36
标识
DOI:10.1016/j.media.2021.102031
摘要

Fundus diseases classification is vital for the health of human beings. However, most of existing methods detect diseases by means of single angle fundus images, which lead to the lack of pathological information. To address this limitation, this paper proposes a novel deep learning method to complete different fundus diseases classification tasks using ultra-wide field scanning laser ophthalmoscopy (SLO) images, which have an ultra-wide field view of 180-200˚. The proposed deep model consists of multi-branch network, atrous spatial pyramid pooling module (ASPP), cross-attention and depth-wise attention module. Specifically, the multi-branch network employs the ResNet-34 model as the backbone to extract feature information, where the ResNet-34 model with two-branch is followed by the ASPP module to extract multi-scale spatial contextual features by setting different dilated rates. The depth-wise attention module can provide the global attention map from the multi-branch network, which enables the network to focus on the salient targets of interest. The cross-attention module adopts the cross-fusion mode to fuse the channel and spatial attention maps from the ResNet-34 model with two-branch, which can enhance the representation ability of the disease-specific features. The extensive experiments on our collected SLO images and two publicly available datasets demonstrate that the proposed method can outperform the state-of-the-art methods and achieve quite promising classification performance of the fundus diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
邓超发布了新的文献求助10
2秒前
激昂的南晴完成签到 ,获得积分10
3秒前
4秒前
fkwwdamocles发布了新的文献求助10
6秒前
小李飞刀发布了新的文献求助10
7秒前
liuaq627完成签到 ,获得积分10
7秒前
小饶完成签到,获得积分10
8秒前
老虎皮完成签到,获得积分10
9秒前
菟小鹿发布了新的文献求助10
9秒前
酷炫的幻丝完成签到 ,获得积分10
9秒前
单纯灵松完成签到 ,获得积分20
11秒前
13秒前
小新完成签到 ,获得积分10
14秒前
14秒前
科研通AI5应助痴情的博超采纳,获得10
14秒前
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
小李老博应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
Ava应助徐个愿吧采纳,获得10
16秒前
Owen应助科研通管家采纳,获得30
16秒前
16秒前
半生瓜应助科研通管家采纳,获得20
16秒前
随遇而安应助科研通管家采纳,获得20
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
可爱的函函应助Yossi采纳,获得10
17秒前
谢青完成签到,获得积分10
18秒前
18秒前
屑屑鲨鱼发布了新的文献求助10
19秒前
19秒前
gr完成签到,获得积分10
20秒前
20秒前
lin发布了新的文献求助10
22秒前
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837158
求助须知:如何正确求助?哪些是违规求助? 3379387
关于积分的说明 10508924
捐赠科研通 3099088
什么是DOI,文献DOI怎么找? 1706862
邀请新用户注册赠送积分活动 821288
科研通“疑难数据库(出版商)”最低求助积分说明 772499