Deep multiple-instance learning for abnormal cell detection in cervical histopathology images

放大倍数 计算机科学 宫颈癌 人工智能 数字化病理学 数字成像 组织病理学 像素 数字图像 计算机视觉 图像处理 模式识别(心理学) 医学 病理 图像(数学) 癌症 内科学
作者
Anabik Pal,Zhiyun Xue,Kanan Desai,A A Banjo,Clement A. Adepiti,L. Rodney Long,Mark Schiffman,Sameer Antani
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:138: 104890-104890 被引量:40
标识
DOI:10.1016/j.compbiomed.2021.104890
摘要

Cervical cancer is a disease of significant concern affecting women's health worldwide. Early detection of and treatment at the precancerous stage can help reduce mortality. High-grade cervical abnormalities and precancer are confirmed using microscopic analysis of cervical histopathology. However, manual analysis of cervical biopsy slides is time-consuming, needs expert pathologists, and suffers from reader variability errors. Prior work in the literature has suggested using automated image analysis algorithms for analyzing cervical histopathology images captured with the whole slide digital scanners (e.g., Aperio, Hamamatsu, etc.). However, whole-slide digital tissue scanners with good optical magnification and acceptable imaging quality are cost-prohibitive and difficult to acquire in low and middle-resource regions. Hence, the development of low-cost imaging systems and automated image analysis algorithms are of critical importance. Motivated by this, we conduct an experimental study to assess the feasibility of developing a low-cost diagnostic system with the H&E stained cervical tissue image analysis algorithm. In our imaging system, the image acquisition is performed by a smartphone affixing it on the top of a commonly available light microscope which magnifies the cervical tissues. The images are not captured in a constant optical magnification, and, unlike whole-slide scanners, our imaging system is unable to record the magnification. The images are mega-pixel images and are labeled based on the presence of abnormal cells. In our dataset, there are total 1331 (train: 846, validation: 116 test: 369) images. We formulate the classification task as a deep multiple instance learning problem and quantitatively evaluate the classification performance of four different types of multiple instance learning algorithms trained with five different architectures designed with varying instance sizes. Finally, we designed a sparse attention-based multiple instance learning framework that can produce a maximum of 84.55% classification accuracy on the test set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏魏完成签到,获得积分10
1秒前
偌佟完成签到,获得积分20
2秒前
帅气飞凤发布了新的文献求助10
3秒前
3秒前
沉静水风发布了新的文献求助10
4秒前
林灿宇关注了科研通微信公众号
6秒前
8秒前
9秒前
10秒前
11秒前
Daisykiller完成签到,获得积分10
12秒前
英俊的铭应助WT采纳,获得30
12秒前
林灿宇发布了新的文献求助30
15秒前
15秒前
17秒前
12321完成签到,获得积分10
17秒前
17秒前
19秒前
21秒前
隐形曼青应助zmy采纳,获得50
23秒前
单薄碧灵完成签到 ,获得积分10
24秒前
小马甲应助机灵的觅山采纳,获得10
24秒前
所所应助内向的不言采纳,获得10
25秒前
科研通AI6应助李翔采纳,获得10
27秒前
灵儿完成签到,获得积分10
29秒前
党弛完成签到,获得积分10
29秒前
luo完成签到,获得积分20
31秒前
廉锦枫发布了新的文献求助10
32秒前
32秒前
33秒前
妖娆完成签到,获得积分10
33秒前
luf完成签到,获得积分10
34秒前
36秒前
南边的海发布了新的文献求助10
37秒前
zmy发布了新的文献求助50
38秒前
辛未完成签到 ,获得积分10
39秒前
徽影完成签到,获得积分10
40秒前
南桥枝关注了科研通微信公众号
41秒前
机灵的觅山完成签到,获得积分10
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4434717
求助须知:如何正确求助?哪些是违规求助? 3909914
关于积分的说明 12143945
捐赠科研通 3556006
什么是DOI,文献DOI怎么找? 1951703
邀请新用户注册赠送积分活动 991747
科研通“疑难数据库(出版商)”最低求助积分说明 887463