Hybrid embedding-based text representation for hierarchical multi-label text classification

嵌入 计算机科学 等级制度 人工智能 文字嵌入 编码 语义学(计算机科学) 自然语言处理 图形 词(群论) 代表(政治) 模式识别(心理学) 理论计算机科学 数学 法学 程序设计语言 化学 基因 经济 几何学 政治 生物化学 市场经济 政治学
作者
Yinglong Ma,Xiaofeng Liu,Lijiao Zhao,Yue Liang,Peng Zhang,Beihong Jin
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115905-115905 被引量:39
标识
DOI:10.1016/j.eswa.2021.115905
摘要

Many real-world text classification tasks often deal with a large number of closely related categories organized in a hierarchical structure or taxonomy. Hierarchical multi-label text classification (HMTC) has become rather challenging when it requires handling large sets of closely related categories. The structural features of all categories in the entire hierarchy and the word semantics of their category labels are very helpful in improving text classification accuracy over large sets of closely related categories, which has been neglected in most of existing HMTC approaches. In this paper, we present a hybrid embedding-based text representation for HMTC with high accuracy. First, the hybrid embedding consists of both graph embedding of categories in the hierarchy and their word embedding of category labels. The Structural Deep Network Embedding-based graph embedding model is used to simultaneously encode the global and local structural features of a given category in the whole hierarchy for making the category structurally discriminable. We further use the word embedding technique to encode the word semantics of each category label in the hierarchy for making different categories semantically discriminable. Second, we presented a level-by-level HMTC approach based on the bidirectional Gated Recurrent Unit network model together with the hybrid embedding that is used to learn the representation of the text level-by-level. Last but not least, extensive experiments were made over five large-scale real-world datasets in comparison with the state-of-the-art hierarchical and flat multi-label text classification approaches, and the experimental results show that our approach is very competitive to the state-of-the-art approaches in classification accuracy, in particular maintaining computational costs while achieving superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助江雯君采纳,获得10
刚刚
轻松的贞完成签到,获得积分10
1秒前
生动绫发布了新的文献求助10
1秒前
random完成签到,获得积分10
2秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
anan0419发布了新的文献求助30
5秒前
zho驳回了赘婿应助
5秒前
6秒前
阿渺发布了新的文献求助10
6秒前
1234完成签到,获得积分10
9秒前
轻松的贞发布了新的文献求助10
10秒前
铁妹完成签到,获得积分10
11秒前
xc124完成签到,获得积分10
13秒前
wanci应助顶刊相见采纳,获得10
16秒前
欢呼的明雪完成签到 ,获得积分10
17秒前
Bonnienuit发布了新的文献求助10
18秒前
江雯君完成签到,获得积分10
19秒前
阿渺完成签到,获得积分10
19秒前
827584450应助楚阔采纳,获得20
22秒前
22秒前
科研通AI5应助阿泽采纳,获得10
23秒前
Wizard发布了新的文献求助10
28秒前
大模型应助典雅的不悔采纳,获得10
32秒前
HHTTY完成签到 ,获得积分10
33秒前
Yang完成签到,获得积分20
33秒前
三水发布了新的文献求助30
34秒前
小蘑菇应助xgx984采纳,获得10
35秒前
39秒前
41秒前
Simonn29完成签到,获得积分10
41秒前
等待听安完成签到 ,获得积分10
42秒前
尊敬的飞槐应助圈圈采纳,获得10
43秒前
43秒前
43秒前
研友_VZG7GZ应助kingcoming采纳,获得10
43秒前
44秒前
44秒前
JamesPei应助迅速的八宝粥采纳,获得10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780526
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225152
捐赠科研通 3041089
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669