Aspect-based Sentiment Analysis with Type-aware Graph Convolutional Networks and Layer Ensemble

计算机科学 依赖关系图 依赖关系(UML) 图形 杠杆(统计) 情绪分析 人工智能 水准点(测量) 理论计算机科学 自然语言处理 机器学习 数据挖掘 大地测量学 地理
作者
Yuanhe Tian,Guimin Chen,Yan Song
标识
DOI:10.18653/v1/2021.naacl-main.231
摘要

It is popular that neural graph-based models are applied in existing aspect-based sentiment analysis (ABSA) studies for utilizing word relations through dependency parses to facilitate the task with better semantic guidance for analyzing context and aspect words. However, most of these studies only leverage dependency relations without considering their dependency types, and are limited in lacking efficient mechanisms to distinguish the important relations as well as learn from different layers of graph based models. To address such limitations, in this paper, we propose an approach to explicitly utilize dependency types for ABSA with type-aware graph convolutional networks (T-GCN), where attention is used in T-GCN to distinguish different edges (relations) in the graph and attentive layer ensemble is proposed to comprehensively learn from different layers of T-GCN. The validity and effectiveness of our approach are demonstrated in the experimental results, where state-of-the-art performance is achieved on six English benchmark datasets. Further experiments are conducted to analyze the contributions of each component in our approach and illustrate how different layers in T-GCN help ABSA with quantitative and qualitative analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助阔达莫茗采纳,获得30
1秒前
科研通AI2S应助皮皮采纳,获得30
2秒前
脑洞疼应助大力的凝琴采纳,获得10
2秒前
万能图书馆应助Sun采纳,获得10
3秒前
onlooker完成签到,获得积分10
6秒前
7秒前
8秒前
王泽芬完成签到,获得积分10
8秒前
domkps完成签到 ,获得积分10
9秒前
9秒前
13秒前
lucky应助Sun采纳,获得10
13秒前
jenningseastera应助阿敬采纳,获得10
14秒前
14秒前
15秒前
落寞白曼发布了新的文献求助10
15秒前
16秒前
21秒前
常丽芳发布了新的文献求助10
21秒前
GD发布了新的文献求助10
21秒前
长情霸发布了新的文献求助10
21秒前
23秒前
南宫映榕发布了新的文献求助10
25秒前
25秒前
科研通AI2S应助SHAN采纳,获得10
27秒前
常丽芳完成签到,获得积分10
27秒前
CodeCraft应助机器猫采纳,获得30
28秒前
30秒前
长情霸完成签到,获得积分10
32秒前
32秒前
科研通AI5应助sam采纳,获得10
34秒前
CWNU_HAN应助李秋秋采纳,获得30
34秒前
Colin完成签到,获得积分10
35秒前
36秒前
瑞仔发布了新的文献求助10
36秒前
李爱国应助Hiker采纳,获得10
37秒前
38秒前
小马甲应助咖啡先生采纳,获得10
38秒前
39秒前
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150