A layer-by-layer quality monitoring framework for 3D printing

EWMA图表 控制图 统计过程控制 图层(电子) 计算机科学 过程(计算) 大规模定制 人工智能 像素 自动化 逐层 质量(理念) 工程类 工程制图
作者
Mohammad Najjartabar Bisheh,Shing I. Chang,Shuting Lei
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:157: 107314-107314 被引量:6
标识
DOI:10.1016/j.cie.2021.107314
摘要

• Layer-by-layer process monitoring automating 3D printing quality check. • Self-Start control charts starting after two successful printed parts. • Machine learning algorithms implemented for image preprocessing. • Clustering and ARIMA filtering methods used to form homogeneous charting families. • EWMA control charts for image-based quality monitoring. Technology development in additive manufacturing is accelerating transition from mass production to mass customization. In this transition, automation in all stages of production including quality control is a key. In this study, a layer-wise framework is proposed to monitor quality of 3D printing parts based on top-view images. The proposed statistical process monitoring method starts with self-start control charts that require only two successful initial prints. Answering the challenges of image processing due to lighting, a Machine Learning (ML) method is adopted to separate each layer from the printing bed. A sample image is compared to the standard image from a good part at each layer. The number of pixels in the difference images is fed into the proposed control charts to monitor printing process at each layer. An Exponentially Weighted Moving Average (EWMA) chart based on the number of pixels is used for process monitoring at each layer. Once enough parts have been printed, homogeneous layers are clustered to reduce the number of control charts needed for process monitoring. Experimental results based on a 3-inch diameter basket part show that the proposed framework based on continuously monitoring of layer-by-layer images is able of detecting small changes in printing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐友灵完成签到,获得积分10
刚刚
tRNA发布了新的文献求助10
刚刚
我是老大应助迷路的天蓉采纳,获得10
1秒前
1秒前
FashionBoy应助王啵啵采纳,获得10
1秒前
Leo完成签到,获得积分10
2秒前
Andre发布了新的文献求助10
2秒前
Auston_zhong应助qq采纳,获得10
2秒前
宋芝恬完成签到,获得积分10
3秒前
善良的远锋完成签到,获得积分10
4秒前
5秒前
huateng完成签到,获得积分10
5秒前
5秒前
6秒前
科大y发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
科研土狗关注了科研通微信公众号
7秒前
8秒前
8秒前
young完成签到,获得积分10
8秒前
化尾鱼完成签到,获得积分10
8秒前
tbb发布了新的文献求助10
9秒前
贝儿发布了新的文献求助10
10秒前
10秒前
wrahb完成签到,获得积分10
10秒前
小王同学完成签到 ,获得积分10
11秒前
12秒前
zzz发布了新的文献求助10
12秒前
科大y完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
科研通AI5应助wjw采纳,获得10
13秒前
英俊的铭应助务实寒天采纳,获得10
14秒前
kinn应助xixi采纳,获得10
15秒前
15秒前
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793818
求助须知:如何正确求助?哪些是违规求助? 3338647
关于积分的说明 10291005
捐赠科研通 3055082
什么是DOI,文献DOI怎么找? 1676342
邀请新用户注册赠送积分活动 804374
科研通“疑难数据库(出版商)”最低求助积分说明 761853