Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse

计算机科学 卷积神经网络 人工智能 质量(理念) 集合(抽象数据类型) 数据仓库 数据集 质量得分 比例(比率) 数据挖掘 协议(科学) 机器学习 控制(管理) 模式识别(心理学) 医学 哲学 病理 物理 经济 公制(单位) 程序设计语言 替代医学 认识论 量子力学 运营管理
作者
Simona Bottani,Ninon Burgos,Aurélien Maire,Adam Wild,Sébastian Ströer,Didier Dormont,Olivier Colliot
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102219-102219 被引量:34
标识
DOI:10.1016/j.media.2021.102219
摘要

Many studies on machine learning (ML) for computer-aided diagnosis have so far been mostly restricted to high-quality research data. Clinical data warehouses, gathering routine examinations from hospitals, offer great promises for training and validation of ML models in a realistic setting. However, the use of such clinical data warehouses requires quality control (QC) tools. Visual QC by experts is time-consuming and does not scale to large datasets. In this paper, we propose a convolutional neural network (CNN) for the automatic QC of 3D T1-weighted brain MRI for a large heterogeneous clinical data warehouse. To that purpose, we used the data warehouse of the hospitals of the Greater Paris area (Assistance Publique-Hôpitaux de Paris [AP-HP]). Specifically, the objectives were: 1) to identify images which are not proper T1-weighted brain MRIs; 2) to identify acquisitions for which gadolinium was injected; 3) to rate the overall image quality. We used 5000 images for training and validation and a separate set of 500 images for testing. In order to train/validate the CNN, the data were annotated by two trained raters according to a visual QC protocol that we specifically designed for application in the setting of a data warehouse. For objectives 1 and 2, our approach achieved excellent accuracy (balanced accuracy and F1-score >90%), similar to the human raters. For objective 3, the performance was good but substantially lower than that of human raters. Nevertheless, the automatic approach accurately identified (balanced accuracy and F1-score >80%) low quality images, which would typically need to be excluded. Overall, our approach shall be useful for exploiting hospital data warehouses in medical image computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的问寒完成签到,获得积分10
刚刚
bkagyin应助小超人采纳,获得10
刚刚
脑洞疼应助机灵的囧采纳,获得10
1秒前
1秒前
任风发布了新的文献求助10
1秒前
1秒前
科研通AI5应助人机一号采纳,获得10
1秒前
小小橙发布了新的文献求助10
3秒前
深情荆发布了新的文献求助10
4秒前
尖头叉子完成签到,获得积分10
4秒前
5秒前
UPUP关注了科研通微信公众号
5秒前
zyxxxx完成签到,获得积分10
5秒前
6秒前
375195420完成签到,获得积分10
7秒前
cup关注了科研通微信公众号
7秒前
7秒前
传奇3应助禾口王采纳,获得10
7秒前
八二年葡萄糖完成签到,获得积分10
7秒前
迷yo完成签到,获得积分10
8秒前
赘婿应助雨送黄昏采纳,获得10
8秒前
爱学习的小迟完成签到,获得积分10
8秒前
9秒前
Y1sci完成签到,获得积分20
9秒前
ding应助奋斗夏烟采纳,获得10
9秒前
爆米花应助马士全采纳,获得10
10秒前
阔达的柠檬完成签到 ,获得积分10
10秒前
淡定的安白完成签到,获得积分10
11秒前
若枫发布了新的文献求助10
11秒前
XK发布了新的文献求助10
11秒前
11秒前
12秒前
迷yo发布了新的文献求助10
12秒前
badada完成签到,获得积分10
12秒前
薛枏完成签到,获得积分10
12秒前
科研通AI5应助小小橙采纳,获得10
13秒前
13秒前
13秒前
I1waml完成签到 ,获得积分10
13秒前
全或无完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804522
求助须知:如何正确求助?哪些是违规求助? 3349389
关于积分的说明 10344195
捐赠科研通 3065478
什么是DOI,文献DOI怎么找? 1683099
邀请新用户注册赠送积分活动 808713
科研通“疑难数据库(出版商)”最低求助积分说明 764675