Three-dimensional DEM-CFD simulation of a lab-scale fluidized bed to support the development of two-fluid model approach

机械 计算流体力学 离散元法 粒子(生态学) 流化床 CFD-DEM公司 工作(物理) 双流体模型 跟踪(教育) 材料科学 物理 经典力学 热力学 地质学 心理学 教育学 海洋学
作者
Ainur Nigmetova,Enrica Masi,Olivier Simonin,Yann Dufresne,Vincent Moureau
出处
期刊:International Journal of Multiphase Flow [Elsevier BV]
卷期号:156: 104189-104189 被引量:9
标识
DOI:10.1016/j.ijmultiphaseflow.2022.104189
摘要

The present work is dedicated to the numerical study of the hydrodynamics of a pressurized fluidized-bed using an Euler–Lagrange approach, with the goal to gain insight into the Two-Fluid Model (TFM) approach. The gas phase is modeled by filtered Navier–Stokes equations, and the solid particles are tracked using a Discrete Element Method (DEM). Collisions are handled using a soft-sphere model. Numerical predictions of the mean (time-averaged) vertical particle velocity are compared with experimental measurements available from the literature, obtained from a Positron Emission Particle Tracking (PEPT) technique. In addition, DEM-Computational Fluid Dynamics (CFD) results are extensively compared with predictions from TFM numerical simulations. Results accounting for inelastic frictionless particle–particle collisions show a very good agreement with the experimental data and TFM results in the central zone of the reactor. In the near wall region the numerical simulation overestimates the downward particle velocity with respect to the experimental measurements, especially when the particle–wall friction is neglected. The influence of the friction at the wall is therefore further investigated and a local analysis of the particle–wall interactions is carried out. It is demonstrated that the long sustained contacts of particle assemblies with the wall in such a dense regime play a crucial role on the overall bed behavior. Therefore, it is recommended that this effect is taken into account in the boundary conditions of a TFM approach when it is used to predict bubbling fluidized beds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qyf发布了新的文献求助10
刚刚
ni完成签到,获得积分10
刚刚
刚刚
酷酷菲音完成签到,获得积分10
1秒前
1秒前
1秒前
青山完成签到,获得积分10
2秒前
Think发布了新的文献求助10
2秒前
angeldrn完成签到,获得积分10
2秒前
sunrise完成签到,获得积分10
3秒前
vousme完成签到 ,获得积分10
3秒前
Sean完成签到 ,获得积分10
3秒前
王玦发布了新的文献求助10
4秒前
Vera完成签到,获得积分10
4秒前
william发布了新的文献求助10
4秒前
4秒前
Ly啦啦啦发布了新的文献求助10
4秒前
hyl发布了新的文献求助10
5秒前
傅宣完成签到 ,获得积分10
5秒前
蔺文博完成签到,获得积分10
5秒前
桂桂阿云发布了新的文献求助10
5秒前
阿媛呐完成签到,获得积分10
5秒前
5秒前
Fufu发布了新的文献求助10
7秒前
Flora完成签到,获得积分10
7秒前
摆烂fish完成签到,获得积分10
8秒前
8秒前
专心搞学术完成签到,获得积分10
8秒前
DELI完成签到 ,获得积分10
9秒前
9秒前
9秒前
稳重奇异果应助齐静春采纳,获得10
9秒前
酷酷亦寒应助liuzm采纳,获得10
10秒前
丹丹完成签到 ,获得积分10
10秒前
10秒前
SciGPT应助笇采余采纳,获得10
10秒前
超帅的芷蕾完成签到,获得积分10
11秒前
啵清啵完成签到,获得积分10
11秒前
阳光青文完成签到 ,获得积分10
11秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Electrolytes, Interfaces and Interphases 200
The Handbook of Medicinal Chemistry: Principles and Practice 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834152
求助须知:如何正确求助?哪些是违规求助? 3376619
关于积分的说明 10494128
捐赠科研通 3096084
什么是DOI,文献DOI怎么找? 1704842
邀请新用户注册赠送积分活动 820133
科研通“疑难数据库(出版商)”最低求助积分说明 771885