A critical review and comparative study on image segmentation-based techniques for pavement crack detection

阈值 分割 过程(计算) 图像处理 计算机科学 图像分割 鉴定(生物学) 人工智能 领域(数学) 边缘检测 计算机视觉 目视检查 区域增长 图像(数学) 尺度空间分割 数学 操作系统 生物 植物 纯数学
作者
Narges Kheradmandi,Vida Mehranfar
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:321: 126162-126162 被引量:340
标识
DOI:10.1016/j.conbuildmat.2021.126162
摘要

The prompt detection of early decay in the pavement could be an auspicious technique in road maintenance. Admittedly, early crack detection allows preventive measures to be taken to avoid damage and possible failure. With regards to the advancement in computer vision and image processing in civil engineering, traditional visual inspection has been replaced by semi-automatic/automatic techniques. The process of detecting objects from the images is a fundamental stage of any image processing technique since the accuracy rate of the classification will depend heavily on the quality of the results obtained from the segmentation step. The major challenge of pavement image segmentation is the detection of thin, irregular dark lines cracks that are buried into the textured backgrounds. Although the pioneering works on image processing methodologies have proven great merit of such techniques in detecting pavement surface distresses, there is still a need for further improvement. The academic community is already working on image-based identification of pavement cracks, but there is currently no standard structure. This literature review establishes the history of development and interpretation of existing studies before conducting new research; and focuses heavily on three major types of approaches in the field of image segmentation, namely thresholding-based, edge-based, and data driven-based methods. With comparison and analysis of various image segmentation algorithms, this research provides valuable information for researchers working on enhanced segmentation strategies that potentially yield a fully automated distress detection process for pavement images with varying conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
可爱多发布了新的文献求助10
3秒前
4秒前
4秒前
Gugu发布了新的文献求助10
4秒前
4秒前
lala发布了新的文献求助10
5秒前
打打应助noclone采纳,获得10
8秒前
机智雨雪发布了新的文献求助10
9秒前
9秒前
CodeCraft应助Tian采纳,获得10
10秒前
10秒前
逗号先生完成签到,获得积分10
10秒前
田様应助Gugu采纳,获得10
10秒前
安安1128发布了新的文献求助50
11秒前
11秒前
科研启动发布了新的文献求助30
11秒前
gsc完成签到,获得积分10
12秒前
一锅粥完成签到,获得积分10
13秒前
Xi ~完成签到,获得积分10
14秒前
郑伟李发布了新的文献求助10
15秒前
wanci应助小汁儿采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
安安1128完成签到,获得积分10
21秒前
21秒前
今后应助Happyable采纳,获得10
22秒前
23秒前
24秒前
25秒前
Pumpinko发布了新的文献求助10
27秒前
27秒前
彬彬完成签到,获得积分10
27秒前
28秒前
礽粥粥发布了新的文献求助10
29秒前
29秒前
一二完成签到,获得积分10
31秒前
Orange应助Zz采纳,获得10
31秒前
lanjiu发布了新的文献求助10
32秒前
Tian发布了新的文献求助10
32秒前
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493054
求助须知:如何正确求助?哪些是违规求助? 4590959
关于积分的说明 14433133
捐赠科研通 4523660
什么是DOI,文献DOI怎么找? 2478443
邀请新用户注册赠送积分活动 1463458
关于科研通互助平台的介绍 1436118