Topology-Aware Resilient Routing Protocol for FANETs: An Adaptive Q-Learning Approach

计算机科学 网络数据包 路由协议 拓扑(电路) 网络拓扑 布线(电子设计自动化) 架空(工程) 分布式计算 计算机网络 数学 组合数学 操作系统
作者
Yanpeng Cui,Qixun Zhang,Zhiyong Feng,Zhiqing Wei,Ce Shi,Heng Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (19): 18632-18649 被引量:81
标识
DOI:10.1109/jiot.2022.3162849
摘要

Flying ad hoc networks (FANETs) play a crucial role in numerous military and\ncivil applications since it shortens mission duration and enhances coverage\nsignificantly compared with a single unmanned aerial vehicle (UAV). Whereas,\ndesigning an energy-efficient FANET routing protocol with a high packet\ndelivery rate (PDR) and low delay is challenging owing to the dynamic topology\nchanges. In this article, we propose a topology-aware resilient routing\nstrategy based on adaptive Q-learning (TARRAQ) to accurately capture topology\nchanges with low overhead and make routing decisions in a distributed and\nautonomous way. First, we analyze the dynamic behavior of UAV nodes via the\nqueuing theory, and then the closed-form solutions of neighbors' change rate\n(NCR) and neighbors' change interarrival time (NCIT) distribution are derived.\nBased on the real-time NCR and NCIT, a resilient sensing interval (SI) is\ndetermined by defining the expected sensing delay of network events. Besides,\nwe also present an adaptive Q-learning approach that enables UAVs to make\ndistributed, autonomous, and adaptive routing decisions, where the above SI\nensures that the action space can be updated in time at a low cost. The\nsimulation results verify the accuracy of the topology dynamic analysis model\nand also prove that our TARRAQ outperforms the Q-learning-based topology-aware\nrouting (QTAR), mobility prediction-based virtual routing (MPVR), and greedy\nperimeter stateless routing based on energy-efficient hello (EE-Hello) in terms\nof 25.23%, 20.24%, and 13.73% lower overhead, 9.41%, 14.77%, and 16.70% higher\nPDR, and 5.12%, 15.65%, and 11.31% lower energy consumption, respectively.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘猫完成签到 ,获得积分10
刚刚
情怀应助呆萌的蚂蚁采纳,获得10
1秒前
xiiixixixiiix完成签到 ,获得积分10
1秒前
osel发布了新的文献求助10
2秒前
娇1994完成签到,获得积分10
2秒前
2秒前
斯文败类应助枳酒采纳,获得10
3秒前
徐哈哈哈哈完成签到,获得积分20
3秒前
3秒前
3秒前
鸿俦鹤侣完成签到,获得积分10
4秒前
含蓄可冥完成签到,获得积分10
4秒前
蛋黄派发布了新的文献求助10
4秒前
yuyang完成签到,获得积分20
4秒前
林林给林林的求助进行了留言
5秒前
5秒前
6秒前
YEM发布了新的文献求助10
6秒前
7秒前
YC关闭了YC文献求助
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
chen完成签到,获得积分10
10秒前
sxb10101应助柯一一采纳,获得400
10秒前
zhang完成签到,获得积分20
11秒前
11秒前
斯文败类应助hujiayue采纳,获得10
12秒前
longlu发布了新的文献求助10
13秒前
13秒前
13秒前
Orange应助还单身的人英采纳,获得10
13秒前
haoliu完成签到,获得积分10
14秒前
李健应助Wnn采纳,获得10
14秒前
果果发布了新的文献求助10
14秒前
科研通AI2S应助小冯爱睡觉采纳,获得10
14秒前
14秒前
田様应助Rui_Rui采纳,获得10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621273
求助须知:如何正确求助?哪些是违规求助? 4706037
关于积分的说明 14934680
捐赠科研通 4765222
什么是DOI,文献DOI怎么找? 2551555
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746