Multicenter Development and Validation of a Novel Risk Nomogram for Early Prediction of Severe 2019-Novel Coronavirus Pneumonia

列线图 肺炎 2019年冠状病毒病(COVID-19) 冠状病毒 医学 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 重症监护医学 病毒学 内科学 爆发 传染病(医学专业) 疾病
作者
Jiao Gong,Jingyi Ou,Xueping Qiu,Yusheng Jie,Yaqiong Chen,Lianxiong Yuan,Jing Cao,Mingkai Tan,Wenxiong Xu,Fang Zheng,Yaling Shi,Bo Hu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:7
标识
DOI:10.2139/ssrn.3551365
摘要

Background: Severe cases of coronavirus disease 2019 (COVID-19) rapidly develop acute respiratory distress leading to respiratory failure, with remarkably high short-term mortality rates. At present, there is no reliable risk stratification tool for COVID-19 patients. We aimed to construct and validate a model for early identification of severe cases of COVID-19. Methods: SARS-CoV-2 infected patients from two centers in Guangzhou and one center in Wuhan were included retrospectively, and divided into the train and external validation cohorts. All patients with non-severe COVID-19 during hospitalization were followed for more than 15 days following admission and patients who deteriorated to severe COVID-19 were assigned to the severe group. Least absolute shrinkage and selection operator (LASSO) algorithm and logistic regression model were used to construct a nomogram for risk prediction in the train cohort. The predictive accuracy and discriminative ability of nomogram were evaluated by area under the curve (AUC) and calibration curve. Decision curve analysis (DCA) and clinical impact curve analysis (CICA) were conducted to evaluate the clinical applicability of our nomogram. Findings: The train cohort consisted of 189 patients, while the two independent validation cohorts consisted of 165 and 18 patients. Among all cases, 72 (19.35%) patients developed severe COVID-19. We generated the nomogram containing one clinical and six serological indicators (age, serum lactate dehydrogenase, C-reactive protein, the coefficient of variation of red blood cell distribution width, blood urea nitrogen, albumin, direct bilirubin) that could early identify severe COVID-19 patients. The nomogram showed remarkably high diagnostic accuracy in distinguishing individuals with severe COVID-19 from non-severe COVID-19 (AUC 0.914 [95% CI 0.852–0.976] in the train cohort; 0.856 [0.795-0.916] in validation cohort 1. The calibration curve for probability of severe COVID-19 showed optimal agreement between prediction by nomogram and actual observation. DCA and CICA further indicated that our nomogram conferred significantly high clinical net benefit. Interpretation: Our nomogram is a potentially useful prediction tool for risk assessment of COVID-19 patients and early identification of severe COVID-19 patients. Risk stratification will enable better management and optimal use of medical resources via patient prioritization and thus significantly reduce mortality rates.Funding Statement: Science and Technology Program of Guangzhou, China (201804010474)Declaration of Interests: The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.Ethics Approval Statement: The study was approved by the Ethics Committee of the Eighth People's Hospital of Guangzhou (20200547). Written informed consent was waived by the Ethics Commission of the Third Affiliated Hospital of Sun Yat-sen University for emerging infectious diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助欧气青年采纳,获得10
1秒前
MM666999完成签到,获得积分20
1秒前
Moon发布了新的文献求助10
1秒前
英俊的铭应助999999采纳,获得10
3秒前
深情安青应助fan采纳,获得10
4秒前
4秒前
4秒前
小周发布了新的文献求助10
5秒前
5秒前
OxO完成签到,获得积分10
7秒前
8秒前
小马甲应助iQii采纳,获得30
8秒前
Akim应助Moon采纳,获得10
9秒前
YaHaa发布了新的文献求助10
11秒前
OnMyWorldside给Steve的求助进行了留言
11秒前
量子星尘发布了新的文献求助10
12秒前
cfder完成签到,获得积分10
13秒前
14秒前
14秒前
上官若男应助3089ggf采纳,获得10
14秒前
忧郁小懒猪完成签到 ,获得积分10
14秒前
14秒前
爆米花应助yyww采纳,获得10
15秒前
15秒前
yy完成签到,获得积分10
15秒前
16秒前
史耀宇发布了新的文献求助20
17秒前
ykl完成签到,获得积分10
17秒前
大个应助程希悦采纳,获得10
18秒前
隐形香水发布了新的文献求助10
18秒前
18秒前
surou发布了新的文献求助10
19秒前
yxb完成签到,获得积分10
19秒前
dgg发布了新的文献求助10
19秒前
19秒前
999999完成签到,获得积分20
20秒前
ykmykm发布了新的文献求助10
22秒前
22秒前
wangchong发布了新的文献求助10
24秒前
大马哥完成签到 ,获得积分0
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961708
求助须知:如何正确求助?哪些是违规求助? 4221986
关于积分的说明 13149254
捐赠科研通 4006068
什么是DOI,文献DOI怎么找? 2192693
邀请新用户注册赠送积分活动 1206537
关于科研通互助平台的介绍 1118344