Angiomyolipoma with Minimal Fat

医学 血管平滑肌脂肪瘤 病理 判别式 诊断准确性 乳头状肾细胞癌 核医学 放射科 内科学 肾细胞癌 计算机科学 人工智能
作者
Lifen Yan,Zaiyi Liu,Guangyi Wang,Yanqi Huang,Yubao Liu,Yuanxin Yu,Changhong Liang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:22 (9): 1115-1121 被引量:95
标识
DOI:10.1016/j.acra.2015.04.004
摘要

To retrospectively evaluate the diagnostic performance of texture analysis (TA) for the discrimination of angiomyolipoma (AML) with minimal fat, clear cell renal cell cancer (ccRCC), and papillary renal cell cancer (pRCC) on computed tomography (CT) images and to determine the scanning phase, which contains the strongest discriminative power.Patients with pathologically proved AMLs (n = 18) lacking visible macroscopic fat at CT and patients with pathologically proved ccRCCs (n = 18) and pRCCs (n = 14) were included. All patients underwent CT scan with three phases (precontrast phase [PCP], corticomedullary phase [CMP], and nephrographic phase [NP]). The selected images were analyzed and classified with TA software (MaZda). Texture classification was performed for 1) minimal fat AML versus ccRCC, 2) minimal fat AML versus pRCC, and 3) ccRCC versus pRCC. The classification results were arbitrarily divided into several levels according to the misclassification rates: excellent (misclassification rates ≤10%), good (10%< misclassification rates ≤20%), moderate (20%< misclassification rates ≤30%), fair (30%< misclassification rates ≤40%), and poor (misclassification rates ≥40%).Excellent classification results (error of 0.00%-9.30%) were obtained with nonlinear discriminant analysis for all the three groups, no matter which phase was used. On comparison of the three scanning phases, we observed a trend toward better lesion classification with PCP for minimal fat AML versus ccRCC, CMP, and NP images for ccRCC versus pRCC and found similar discriminative power for minimal fat AML versus pRCC.TA might be a reliable quantitative method for the discrimination of minimal fat AML, ccRCC, and pRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真实的新瑶完成签到,获得积分10
刚刚
无有完成签到,获得积分10
刚刚
1秒前
felix发布了新的文献求助10
1秒前
huilihub完成签到,获得积分10
2秒前
三脸茫然完成签到 ,获得积分10
3秒前
怡宝完成签到 ,获得积分10
3秒前
Pauline完成签到 ,获得积分10
4秒前
huntme完成签到,获得积分10
4秒前
4秒前
香蕉觅云应助YY采纳,获得10
4秒前
NexusExplorer应助JingP采纳,获得10
4秒前
zhangyu完成签到,获得积分10
4秒前
linhante完成签到 ,获得积分0
5秒前
Kay76完成签到,获得积分10
7秒前
芋头读文献完成签到,获得积分10
7秒前
LOVER完成签到 ,获得积分10
7秒前
九川发布了新的文献求助10
8秒前
8秒前
战战完成签到,获得积分10
9秒前
CipherSage应助suchashing采纳,获得10
9秒前
天马行空完成签到,获得积分10
9秒前
我不到啊完成签到,获得积分10
11秒前
派大星完成签到,获得积分10
11秒前
松子儿hhh完成签到,获得积分10
11秒前
自信的冬日完成签到,获得积分10
13秒前
章鱼小丸子完成签到,获得积分10
14秒前
15秒前
lucky完成签到,获得积分10
15秒前
君莫笑完成签到,获得积分10
15秒前
深情安青应助妮妮采纳,获得10
16秒前
顽石完成签到,获得积分10
16秒前
hello_墩墩完成签到,获得积分10
16秒前
liu123479完成签到,获得积分10
17秒前
Fairy完成签到,获得积分10
19秒前
木盒发布了新的文献求助10
19秒前
幽默的寻雪完成签到,获得积分10
19秒前
WELXCNK完成签到,获得积分10
19秒前
20秒前
AlexanderNEIL完成签到 ,获得积分10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795646
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301472
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677590
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642