倾向得分匹配
协变量
逆概率加权
观察研究
统计
加权
医学
平均处理效果
匹配(统计)
数学
放射科
作者
Hui Nian,Chang Yu,Juan Ding,Huiyun Wu,William D. Dupont,Steven M. Brunwasser,Tebeb Gebretsadik,Tina V. Hartert,Pingsheng Wu
标识
DOI:10.1080/02664763.2018.1523375
摘要
The propensity score (PS) method is widely used to estimate the average treatment effect (TE) in observational studies. However, it is generally confined to the binary treatment assignment. In an extension to the settings of a multi-level treatment, Imbens proposed a generalized propensity score which is the conditional probability of receiving a particular level of the treatment given pre-treatment variables. The average TE can then be estimated by conditioning solely on the generalized PS under the assumption of weak unconfounded-ness. In the present work, we adopted this approach and conducted extensive simulations to evaluate the performance of several methods using the generalized PS, including subclassification, matching, inverse probability of treatment weighting (IPTW), and covariate adjustment. Compared with other methods, IPTW had the preferred overall performance. We then applied these methods to a retrospective cohort study of 228,876 pregnant women. The impact of the exposure to different types of the antidepressant medications (no exposure, selective serotonin reuptake inhibitor (SSRI) only, non-SSRI only, and both) during pregnancy on several important infant outcomes (birth weight, gestation age, preterm labor, and respiratory distress) were assessed.
科研通智能强力驱动
Strongly Powered by AbleSci AI