Silver-modified MoS2 nanosheets as a high-efficiency visible-light photocatalyst for water splitting

材料科学 光催化 分解水 可见光谱 二硫化钼 制氢 兴奋剂 带隙 化学工程 吸收(声学) 单层 光催化分解水 纳米技术 光化学 光电子学 催化作用 复合材料 有机化学 化学 工程类
作者
Meiqin Li,Zhen Cui,Enling Li
出处
期刊:Ceramics International [Elsevier]
卷期号:45 (11): 14449-14456 被引量:57
标识
DOI:10.1016/j.ceramint.2019.04.166
摘要

Abstract One of the major challenges that the human beings are facing is the shortage of the fossil fuels. Hydrogen is considered as the most attractive renewable energy because of its abundant high energy density. Semiconductor photocatalytic technology for water decomposition is a promising method for converting sunlight into hydrogen energy, which has attracted considerable attention. Compared with bulk materials, two-dimensional (2D) materials exhibit remarkable photocatalytic properties. In this work, the pristine high-quality hexagonal molybdenum disulfide (MoS2) nanosheets and Ag-doped MoS2 nanosheets were synthesized by hydrothermal method, and the thickness of nanosheets was ranged from 0.9 to 1.1 nm. In addition, the absorption spectra of Ag-doped MoS2 nanosheets increased with the increase of Ag content. What's more, the photocatalytic properties of Ag-doped MoS2 nanosheets were tested, and the results show that Ag-doped MoS2 nanosheets have good stability, high hydrogen production efficiency and strong photocatalytic activity. It is worth mentioning that the photocatalytic hydrogen production rate of Ag-doped MoS2 nanosheets can reach 2695 μmol h−1 g−1. Meanwhile, density functional theory was used to calculate the optical properties, electronic structure of pristine and Ag-doped monolayer MoS2. These calculated results indicate that the absorption intensity of Ag-doped MoS2 in the ultraviolet–visible and visible light region increases significantly, and the conduction band of Ag-doped monolayer MoS2 is downshift compared with pristine MoS2. Therefore, Ag-doped MoS2 can optimize the band structure and promote the absorption of visible light, thereby improving the photocatalytic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
David完成签到,获得积分10
刚刚
pbj发布了新的文献求助10
刚刚
称心刺猬发布了新的文献求助10
1秒前
1秒前
橙啊晨完成签到,获得积分20
1秒前
充电宝应助科研辣鸡采纳,获得10
2秒前
项人发布了新的文献求助10
3秒前
科研通AI2S应助颜1采纳,获得10
3秒前
sweettt3发布了新的文献求助10
3秒前
高贵振家发布了新的文献求助10
3秒前
武生发布了新的文献求助10
4秒前
万能图书馆应助yolo采纳,获得10
4秒前
曼凡发布了新的文献求助10
4秒前
好久不见完成签到,获得积分20
4秒前
5秒前
勤恳思天发布了新的文献求助10
5秒前
南冥完成签到,获得积分10
5秒前
英俊的铭应助pbj采纳,获得10
6秒前
6秒前
6秒前
炖地瓜完成签到 ,获得积分10
6秒前
纪梵希发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
动人的汉堡完成签到,获得积分10
7秒前
英俊的铭应助成就的靖琪采纳,获得10
8秒前
晓晓完成签到,获得积分10
8秒前
8秒前
上帝开玩笑完成签到,获得积分10
9秒前
9秒前
小铃铛发布了新的文献求助10
9秒前
9秒前
ivy完成签到,获得积分10
9秒前
121卡卡完成签到 ,获得积分10
9秒前
扶溪筠完成签到,获得积分10
10秒前
10秒前
内向灵凡发布了新的文献求助10
10秒前
F1reStone完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423