清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study

糖尿病性视网膜病变 眼底(子宫) 人工智能 视网膜病变 视网膜 验光服务 医学 人口 计算机科学 眼科 糖尿病 环境卫生 内分泌学
作者
Valentina Bellemo,Zhan Wei Lim,Gilbert Lim,Quang D. Nguyen,Yuchen Xie,Michelle Yip,Haslina Hamzah,Jinyi Ho,Xin Q Lee,Wynne Hsu,Mong Li Lee,Lillian Musonda,Manju Chandran,Grace Chipalo-Mutati,Mulenga Muma,Gavin Siew Wei Tan,Sobha Sivaprasad,Geeta Menon,Tien Yin Wong,Daniel Shu Wei Ting
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:1 (1): e35-e44 被引量:290
标识
DOI:10.1016/s2589-7500(19)30004-4
摘要

BackgroundRadical measures are required to identify and reduce blindness due to diabetes to achieve the Sustainable Development Goals by 2030. Therefore, we evaluated the accuracy of an artificial intelligence (AI) model using deep learning in a population-based diabetic retinopathy screening programme in Zambia, a lower-middle-income country.MethodsWe adopted an ensemble AI model consisting of a combination of two convolutional neural networks (an adapted VGGNet architecture and a residual neural network architecture) for classifying retinal colour fundus images. We trained our model on 76 370 retinal fundus images from 13 099 patients with diabetes who had participated in the Singapore Integrated Diabetic Retinopathy Program, between 2010 and 2013, which has been published previously. In this clinical validation study, we included all patients with a diagnosis of diabetes that attended a mobile screening unit in five urban centres in the Copperbelt province of Zambia from Feb 1 to June 31, 2012. In our model, referable diabetic retinopathy was defined as moderate non-proliferative diabetic retinopathy or worse, diabetic macular oedema, and ungradable images. Vision-threatening diabetic retinopathy comprised severe non-proliferative and proliferative diabetic retinopathy. We calculated the area under the curve (AUC), sensitivity, and specificity for referable diabetic retinopathy, and sensitivities of vision-threatening diabetic retinopathy and diabetic macular oedema compared with the grading by retinal specialists. We did a multivariate analysis for systemic risk factors and referable diabetic retinopathy between AI and human graders.FindingsA total of 4504 retinal fundus images from 3093 eyes of 1574 Zambians with diabetes were prospectively recruited. Referable diabetic retinopathy was found in 697 (22·5%) eyes, vision-threatening diabetic retinopathy in 171 (5·5%) eyes, and diabetic macular oedema in 249 (8·1%) eyes. The AUC of the AI system for referable diabetic retinopathy was 0·973 (95% CI 0·969–0·978), with corresponding sensitivity of 92·25% (90·10–94·12) and specificity of 89·04% (87·85–90·28). Vision-threatening diabetic retinopathy sensitivity was 99·42% (99·15–99·68) and diabetic macular oedema sensitivity was 97·19% (96·61–97·77). The AI model and human graders showed similar outcomes in referable diabetic retinopathy prevalence detection and systemic risk factors associations. Both the AI model and human graders identified longer duration of diabetes, higher level of glycated haemoglobin, and increased systolic blood pressure as risk factors associated with referable diabetic retinopathy.InterpretationAn AI system shows clinically acceptable performance in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, and diabetic macular oedema in population-based diabetic retinopathy screening. This shows the potential application and adoption of such AI technology in an under-resourced African population to reduce the incidence of preventable blindness, even when the model is trained in a different population.FundingNational Medical Research Council Health Service Research Grant, Large Collaborative Grant, Ministry of Health, Singapore; the SingHealth Foundation; and the Tanoto Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研菜菜完成签到,获得积分10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
牛奶拌可乐完成签到 ,获得积分10
16秒前
泽锦臻完成签到 ,获得积分10
31秒前
充电宝应助Bob采纳,获得10
35秒前
50秒前
52秒前
kangshuai完成签到,获得积分10
58秒前
直率的青寒完成签到,获得积分10
1分钟前
1分钟前
华仔应助drbrianlau采纳,获得10
1分钟前
糟糕的翅膀完成签到,获得积分10
1分钟前
czj完成签到 ,获得积分10
1分钟前
仙女完成签到 ,获得积分10
2分钟前
NexusExplorer应助科研通管家采纳,获得50
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
2分钟前
liars完成签到 ,获得积分10
2分钟前
drbrianlau发布了新的文献求助10
2分钟前
上官若男应助nojego采纳,获得10
2分钟前
jerry完成签到 ,获得积分10
2分钟前
2分钟前
mickaqi完成签到 ,获得积分10
3分钟前
3分钟前
nojego发布了新的文献求助10
3分钟前
3分钟前
Bob完成签到,获得积分10
4分钟前
汉堡包应助科研通管家采纳,获得20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
胡可完成签到 ,获得积分10
4分钟前
Amy完成签到 ,获得积分10
5分钟前
changweipeng完成签到,获得积分10
5分钟前
5分钟前
yar应助changweipeng采纳,获得10
5分钟前
乏味好3发布了新的文献求助35
5分钟前
zhaoxiaoyan完成签到,获得积分10
5分钟前
Angenstern完成签到 ,获得积分10
6分钟前
危机的慕卉完成签到 ,获得积分10
6分钟前
6分钟前
大胆的碧菡完成签到,获得积分10
7分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043341
求助须知:如何正确求助?哪些是违规求助? 3581114
关于积分的说明 11383708
捐赠科研通 3308611
什么是DOI,文献DOI怎么找? 1821102
邀请新用户注册赠送积分活动 893510
科研通“疑难数据库(出版商)”最低求助积分说明 815718