Extracting Low-/High- Frequency Knowledge from Graph Neural Networks and Injecting it into MLPs: An Effective GNN-to-MLP Distillation Framework

计算机科学 蒸馏 推论 可扩展性 人工智能 机器学习 图形 领域知识 频域 过程(计算) 数据挖掘 模式识别(心理学) 理论计算机科学 化学 数据库 计算机视觉 操作系统 有机化学
作者
Lirong Wu,Haitao Lin,Yufei Huang,Tianyu Fan,Stan Z. Li
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2305.10758
摘要

Recent years have witnessed the great success of Graph Neural Networks (GNNs) in handling graph-related tasks. However, MLPs remain the primary workhorse for practical industrial applications due to their desirable inference efficiency and scalability. To reduce their gaps, one can directly distill knowledge from a well-designed teacher GNN to a student MLP, which is termed as GNN-to-MLP distillation. However, the process of distillation usually entails a loss of information, and ``which knowledge patterns of GNNs are more likely to be left and distilled into MLPs?" becomes an important question. In this paper, we first factorize the knowledge learned by GNNs into low- and high-frequency components in the spectral domain and then derive their correspondence in the spatial domain. Furthermore, we identified a potential information drowning problem for existing GNN-to-MLP distillation, i.e., the high-frequency knowledge of the pre-trained GNNs may be overwhelmed by the low-frequency knowledge during distillation; we have described in detail what it represents, how it arises, what impact it has, and how to deal with it. In this paper, we propose an efficient Full-Frequency GNN-to-MLP (FF-G2M) distillation framework, which extracts both low-frequency and high-frequency knowledge from GNNs and injects it into MLPs. Extensive experiments show that FF-G2M improves over the vanilla MLPs by 12.6% and outperforms its corresponding teacher GNNs by 2.6% averaged over six graph datasets and three common GNN architectures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助朴实如冰采纳,获得10
1秒前
耳机杀手发布了新的文献求助10
2秒前
2秒前
Orange应助欢喜藏今采纳,获得10
2秒前
SaqLa完成签到,获得积分10
2秒前
YuGe发布了新的文献求助10
2秒前
Hello应助111采纳,获得10
2秒前
chenchen发布了新的文献求助10
2秒前
2秒前
悦耳的眼神完成签到,获得积分10
3秒前
开朗白山完成签到,获得积分10
3秒前
3秒前
liyi完成签到 ,获得积分10
3秒前
3秒前
坚若磐石完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
5秒前
5秒前
Orange应助hl7166采纳,获得10
6秒前
沉默傲薇发布了新的文献求助10
7秒前
7秒前
chenll1988完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
fsw完成签到,获得积分10
9秒前
多多完成签到,获得积分10
9秒前
情怀应助大气灵枫采纳,获得10
10秒前
可爱小铭完成签到,获得积分10
11秒前
冰沁沁心完成签到,获得积分10
12秒前
小小书童发布了新的文献求助10
12秒前
Jasper应助胡胡采纳,获得10
12秒前
JamesPei应助文献杀手采纳,获得10
13秒前
13秒前
核桃发布了新的文献求助10
13秒前
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4055596
求助须知:如何正确求助?哪些是违规求助? 3593714
关于积分的说明 11418170
捐赠科研通 3319559
什么是DOI,文献DOI怎么找? 1825435
邀请新用户注册赠送积分活动 896523
科研通“疑难数据库(出版商)”最低求助积分说明 817790