Estimation of Adsorbed Amounts in Organoclay by Machine Learning

吸附 有机粘土 弗伦德利希方程 朗缪尔 热力学 化学 近似误差 朗缪尔吸附模型 材料科学 数学 生物系统 应用数学 有机化学 蒙脱石 物理 生物
作者
Hayato Shobuke,Takumi Matsumoto,Fumiya Hirosawa,Masaya Miyagawa,Hiromitsu Takaba
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (1): 1146-1153 被引量:1
标识
DOI:10.1021/acsomega.2c06602
摘要

Adsorption properties of organoclay have been investigated for decades focusing on the morphology and physicochemical properties of two-dimensional interlayers. Experimental studies have previously revealed that the adsorption mechanisms depend on the molecular species of the organocation and adsorbate, making it difficult to estimate the adsorbed amount without experiments. Considering that the adsorption of aromatic compounds has been reported by using various clays, organocations, and adsorbates, machine learning is a promising method to overcome the difficulty. In the present study, we collected adsorption data from the literature and constructed models to estimate the adsorbed amount of the organoclay by random forest regression. The composition of the clay, molecular descriptors of the organocation and adsorbate obtained by the RDKit, and experimental conditions were used as the explanatory variables. Simple model construction by using all the experimental data resulted in low R2 and a mean absolute error. This problem was solved by the correction of the adsorbed amount data by the Langmuir or Freundlich equation and the following model construction at various equilibrium concentrations. The plots of the adsorbed amount estimated by the latter model were located close to the corresponding adsorption isotherm, while that by the former was not. Thus, it was revealed that the adsorbed amount was estimated quantitatively without understanding the adsorption mechanisms individually. Feature importance analysis also revealed that the combination of the organocation and adsorbate is important at high equilibrium concentrations, while the clay should be selected carefully as the concentration gets lower. Our results give an insight into the rational design of the organoclay including the synthesis and adsorption properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助fvsd采纳,获得10
1秒前
Ring完成签到 ,获得积分10
2秒前
小二郎应助学术渣渣采纳,获得10
3秒前
SMG发布了新的文献求助10
3秒前
6秒前
6秒前
7秒前
pluto应助Sean采纳,获得50
8秒前
科研通AI5应助谜墨采纳,获得10
11秒前
mona发布了新的文献求助10
11秒前
yiling发布了新的文献求助10
11秒前
11秒前
科目三应助丰富烧鹅采纳,获得10
12秒前
orixero应助雪白的面包采纳,获得10
15秒前
15秒前
林川完成签到,获得积分10
16秒前
17秒前
居遥发布了新的文献求助10
17秒前
18秒前
David应助暗流采纳,获得10
18秒前
fvsd发布了新的文献求助10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得30
18秒前
科研通AI5应助小阎采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
19秒前
19秒前
有魅力的电脑完成签到,获得积分10
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
健忘英姑应助科研通管家采纳,获得20
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
Hello应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
danna应助科研通管家采纳,获得20
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
20秒前
学术渣渣发布了新的文献求助10
21秒前
21秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847014
求助须知:如何正确求助?哪些是违规求助? 3389511
关于积分的说明 10557523
捐赠科研通 3109834
什么是DOI,文献DOI怎么找? 1713999
邀请新用户注册赠送积分活动 825064
科研通“疑难数据库(出版商)”最低求助积分说明 775172