亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On cross-attention-based graph neural networks for fault diagnosis using multi-sensor measurement

计算机科学 人工神经网络 图形 断层(地质) 人工智能 实时计算 模式识别(心理学) 理论计算机科学 地质学 地震学
作者
Zhenxing Ren,Yu Zhou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251327760
摘要

Rotating machinery fault diagnostics has received a lot of attention in recent years. As a result, there has been an increase in research interest in rotating machine intelligent fault detection, especially when using measurement from multi-sensors. However, an accurate fault diagnosis is still challenged based on nonlinear and non-stationary vibration signals. On the other hand, not enough research has been done on structural information fusion from multi-sensor measurement due to the complexity of spatial–temporal correlation. This paper explores the use of vibration signals in multi-sensor measurement fusion for rotating machinery fault diagnostics, and a method using a cross-attention-based dual-branch graph neural network (CA-GNN) is proposed. First, improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is used to decompose vibration signals. Variational mode decomposition is then used to further deconstruct the highest-frequency subsequence after its parameters have been optimized using the whale optimization algorithm. Next, we build the CA-GNN, which contains two space branches for high- and low-frequency signals after initially creating the graph using multiple sensor data sets. Information across both branches for high- and low-frequency components can then be efficiently fused. Lastly, two experimental scenarios are used to illustrate the suggested technique and assess its viability and accuracy for rotating machinery fault diagnosis. Results indicate that the proposed method can diagnose rotating machinery health issues with an average accuracy of up to 99%, indicating that the method’s performance can fulfill real-world requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ning_qing完成签到 ,获得积分10
10秒前
璇别给璇别的求助进行了留言
1分钟前
Li应助科研通管家采纳,获得10
2分钟前
bc应助科研通管家采纳,获得30
2分钟前
bc应助科研通管家采纳,获得30
2分钟前
Li应助科研通管家采纳,获得10
2分钟前
Fischl完成签到 ,获得积分10
2分钟前
自然幼翠完成签到,获得积分20
3分钟前
自然幼翠发布了新的文献求助30
3分钟前
zm发布了新的文献求助10
3分钟前
Li应助科研通管家采纳,获得10
4分钟前
Li应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
bc应助科研通管家采纳,获得30
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
zm完成签到,获得积分10
4分钟前
5分钟前
getgetting发布了新的文献求助10
5分钟前
5分钟前
zzzjh发布了新的文献求助10
5分钟前
小吴发布了新的文献求助10
5分钟前
今后应助zzzjh采纳,获得10
6分钟前
6分钟前
zoey发布了新的文献求助10
6分钟前
搜集达人应助zoey采纳,获得10
6分钟前
Li应助科研通管家采纳,获得10
6分钟前
jyy应助科研通管家采纳,获得10
6分钟前
h0jian09完成签到,获得积分10
8分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
不胜玖完成签到 ,获得积分10
9分钟前
清秀灵薇完成签到,获得积分10
9分钟前
一只榴莲发布了新的文献求助10
9分钟前
9分钟前
搜集达人应助一只榴莲采纳,获得10
9分钟前
9分钟前
zzzjh发布了新的文献求助10
9分钟前
11发布了新的文献求助10
9分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329356
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714