Enhancing smart healthcare with female students’ stress and anxiety detection using machine learning

焦虑 心理学 压力(语言学) 医疗保健 临床心理学 应用心理学 精神科 语言学 经济增长 哲学 经济
作者
Farhad Hosseinzadeh Lotfı,Ahmad Lotfi,Masoud Lotfi,Artur Bjelica,Zorica Bogdanović
出处
期刊:Psychology Health & Medicine [Informa]
卷期号:30 (7): 1465-1484
标识
DOI:10.1080/13548506.2025.2484698
摘要

Machine learning (ML) is widely used to predict and detect stress and anxiety. Early detection of stress or anxiety is crucial for clinical pathways to enhance the supportive environment in society, particularly among female students. This study aims to assess and improve the accuracy of detecting stress and anxiety among female students using machine learning algorithms and functions. Three primary features are cigarette smoking, physical activity and grade point average (GPA). The multiple linear regression analysis conducted on 160 datasets obtained from the State-Trait Anxiety Inventory (STAI) at the University of Belgrade was selected. A heat map was utilised to identify the least engaging areas of the model along with most state anxiety factors. Additionally, R-squared (R2), mean absolute error (MAE), mean squared error (MSE) and root mean squared error (RMSE) were employed to assess the errors of the linear regression model for both pre-intervention and post-intervention, focusing on key features related to female students' anxiety. Using the K-Means algorithm, cluster analysis was executed on samples (N = 160) with three key features. The total average anxiety score was 44.39% (out of 80%) and is considered moderate. The heat map indicated a strong relationship between the variables. Overall, the post-intervention stage yielded acceptable results compared to the pre-intervention stage. Two clusters of anxiety among female students were identified, demonstrating that these features can accurately detect anxiety in female students. This research aims to analyse female students' stress and anxiety better using the linear regression algorithm. Additionally, ML functions demonstrated that smoking cigarettes, physical activity and GPA related to the stress and anxiety of female students have reduced errors during anxiety detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
寒冷店员完成签到,获得积分10
2秒前
prejudice发布了新的文献求助10
3秒前
3秒前
缥缈冷亦完成签到,获得积分10
3秒前
科目三应助科研狗采纳,获得10
4秒前
Voloid发布了新的文献求助10
4秒前
顾矜应助eee采纳,获得10
4秒前
汉堡包应助下花雨采纳,获得10
4秒前
Vin完成签到,获得积分20
4秒前
5秒前
5秒前
wulififi发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
lzy完成签到,获得积分10
6秒前
sllpang发布了新的文献求助10
6秒前
树在西元前完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助mmol采纳,获得10
7秒前
8秒前
完美世界应助科研通管家采纳,获得50
8秒前
庐山烟雨发布了新的文献求助10
8秒前
华仔应助TOM采纳,获得10
8秒前
yufanhui应助科研通管家采纳,获得10
8秒前
王一一一一完成签到,获得积分20
8秒前
RR完成签到 ,获得积分10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得20
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
yufanhui应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
yufanhui应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531417
求助须知:如何正确求助?哪些是违规求助? 4620221
关于积分的说明 14572354
捐赠科研通 4559789
什么是DOI,文献DOI怎么找? 2498599
邀请新用户注册赠送积分活动 1478568
关于科研通互助平台的介绍 1449979