Morphology Effect of FeWO4 Boosting Efficiency of Photocatalytic Uranium Extraction under Visible Light and Mechanism Investigation

光催化 Boosting(机器学习) 可见光谱 形态学(生物学) 萃取(化学) 材料科学 化学工程 机制(生物学) 矿物学 化学 纳米技术 光电子学 色谱法 物理 冶金 地质学 催化作用 有机化学 计算机科学 古生物学 量子力学 机器学习 工程类
作者
Jingqin Mao,Libo Yang,Xinyu Yu,Nannan Wang,Xiangbiao Yin,Yuezhou Wei,Xinpeng Wang
出处
期刊:Langmuir [American Chemical Society]
卷期号:41 (11): 7648-7658
标识
DOI:10.1021/acs.langmuir.4c05301
摘要

Wolframite (FeWO4) is a type of polyoxometalate known for its high chemical stability and electronic properties, which makes it an excellent photocatalyst. While FeWO4 has been widely utilized in the domain of organic catalysis, there are currently no documented reports regarding its use in the degradation of U(VI). In this study, the effect of changing the microscopic morphology of the FeWO4 catalyst to enhance its photocatalytic activity was explored. We effectively adjusted the microstructure and crystallinity of the FeWO4 catalyst by varying the hydrothermal synthesis temperature, subsequently analyzed in detail using synchrotron radiation and theoretical calculations. Additionally, the degradation rate of U(VI) in nuclear wastewater reached 98.8% using the FeWO4 catalyst samples synthesized at 200 °C, and the effect of coexisting ions on the performance of FeWO4 was studied, and the results showed that the degradation effect of certain amounts of Na+, Mg2+, K+, and Ca2+ on U(VI) was almost negligible, and it still maintained more than 90% of its initial performance after six cycles, which highlights the wide application prospects of the catalyst in the field of nuclear wastewater treatment in the future. Therefore, FeWO4 exhibits excellent photocatalytic uranium-extraction ability, anti-interference ability, stability, and a low-cost advantage. It holds great application prospects in the field of extracting radioactive uranium from nuclear wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助kook采纳,获得10
刚刚
天才眼镜狗完成签到 ,获得积分10
2秒前
2秒前
王璐瑶完成签到 ,获得积分10
2秒前
汉堡包应助3djacklee采纳,获得10
2秒前
爱笑碧玉完成签到,获得积分10
3秒前
3秒前
Mry发布了新的文献求助10
3秒前
Hello paper完成签到,获得积分10
4秒前
沾沾波发布了新的文献求助10
4秒前
YY完成签到,获得积分10
4秒前
可爱的函函应助小鱼采纳,获得10
4秒前
老坛完成签到,获得积分20
6秒前
lzz应助seanlin2008采纳,获得10
6秒前
领导范儿应助果果糖YLJ采纳,获得10
7秒前
ding应助终陌采纳,获得10
7秒前
老坛发布了新的文献求助10
8秒前
SYMI发布了新的文献求助10
8秒前
9秒前
11秒前
11秒前
含糊的代男完成签到,获得积分10
12秒前
yeyii发布了新的文献求助10
13秒前
13秒前
田様应助淡定丸子采纳,获得10
14秒前
anan应助无奈曼云采纳,获得10
14秒前
14秒前
14秒前
任寒松发布了新的文献求助10
14秒前
栗心完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助无奈曼云采纳,获得10
15秒前
16秒前
酷波er应助老坛采纳,获得10
16秒前
XYF发布了新的文献求助10
16秒前
田様应助meant采纳,获得10
16秒前
16秒前
风中的又亦完成签到 ,获得积分20
17秒前
一桥轻雨完成签到 ,获得积分20
17秒前
终陌发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007