Selenium (Se) foliar fertilizers enhance crop nutrition and address human selenium deficiency, while improper application may lead to excessive intake and residue accumulation. Our study comprehensively assessed the toxicity and function of novel selenium nanoparticles and traditional sodium selenite fertilizers across cell, zebrafish, and murine models. Both fertilizers enhanced antioxidant pathways at low doses, but selenium nanoparticles exhibited stronger antioxidant and ferroptosis-modulating effects with lower toxicity at a high dose. Sodium selenite increased total and lipid ROS production, leading to decreased viability of cells and increased distortion and mortality of zebrafish. In mice, sodium selenite induced hepatic toxicity and decreased GPX4. Transcriptome analysis revealed that sodium selenite downregulated c-JUN and APOA4, weakening the antioxidant defense, whereas selenium nanoparticles promoted ferroptosis resistance through FGF21. These findings suggest selenium nanoparticles as a safer alternative for Se biofortification, mitigating health risks while supporting food security and environmental sustainability.