Optimal Graph Learning based Label Propagation for Cross-Domain Image Classification

计算机科学 人工智能 模式识别(心理学) 图像处理 图形 图论 图像分割 上下文图像分类 图像(数学) 数学 理论计算机科学 组合数学
作者
Wei Wang,Mengzhu Wang,Chao Huang,Cong Wang,Jie Mu,Feiping Nie,Xiaochun Cao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3526380
摘要

Label propagation (LP) is a popular semi-supervised learning technique that propagates labels from a training dataset to a test one using a similarity graph, assuming that nearby samples should have similar labels. However, recent cross-domain problem assumes that training (source domain) and test datasets (target domain) follow different distributions, which may unexpectedly degrade the performance of LP due to small similarity weights connecting the two domains. To address this problem, we propose an approach called optimal graph learning based label propagation (OGL2P), which optimizes one cross-domain graph and two intra-domain graphs to connect the two domains and preserve domain-specific structures, respectively. During label propagation, the cross-domain graph draws two labels close if they are nearby in feature space and from different domains, while the intra-domain graph pulls two labels close if they are nearby in feature space and from the same domain. This makes label propagation more insensitive to cross-domain problem. During graph embedding, the three graphs bring two samples close in an embedded subspace if they are nearby and from the same class. This makes feature representations of the two domains in the embedded subspace are domain-invariant and locally discriminative. Moreover, we optimize the three graphs using both features and labels in the embedded subspace to make them locally discriminative and robust to feature noise. Finally, we conduct extensive experiments on five cross-domain image classification datasets to verify that OGL2P outperforms some state-of-the-art cross-domain approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hilda007应助wangwang2168采纳,获得20
1秒前
Lvbc发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
kk99123应助成就胡萝卜采纳,获得10
4秒前
Hilda007应助wulala采纳,获得10
4秒前
huang发布了新的文献求助10
5秒前
林木深发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
cy完成签到,获得积分20
9秒前
kk99123应助十八鱼采纳,获得10
10秒前
10秒前
科研通AI6应助yan采纳,获得10
10秒前
money完成签到 ,获得积分10
11秒前
彭于晏应助纯情的无剑采纳,获得30
12秒前
松山少林学武功完成签到 ,获得积分10
13秒前
华仔应助xurui_s采纳,获得10
13秒前
辛勤金连完成签到,获得积分10
13秒前
SUNJJ完成签到,获得积分10
14秒前
ccccccp发布了新的文献求助10
14秒前
华仔应助myc采纳,获得10
15秒前
15秒前
biogarfield发布了新的文献求助30
16秒前
Newky完成签到 ,获得积分10
17秒前
17秒前
在水一方应助xiaoyezi123采纳,获得10
17秒前
19秒前
19秒前
21秒前
不学无术完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
Rita发布了新的文献求助10
22秒前
23秒前
loong发布了新的文献求助10
24秒前
不学无术发布了新的文献求助10
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342415
求助须知:如何正确求助?哪些是违规求助? 4478287
关于积分的说明 13938818
捐赠科研通 4374736
什么是DOI,文献DOI怎么找? 2403791
邀请新用户注册赠送积分活动 1396394
关于科研通互助平台的介绍 1368506