已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computational Micromechanics and Machine Learning-Informed Design of Composite Carbon Fiber-Based Structural Battery for Multifunctional Performance Prediction

微观力学 材料科学 电池(电) 有限元法 储能 计算机科学 多尺度建模 机械工程 复合数 复合材料 结构工程 工程类 功率(物理) 物理 量子力学 化学 计算化学
作者
Mohamad A. Raja,Won-Ki Kim,Wonvin Kim,Su Hyun Lim,Seong Su Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c19073
摘要

Integrating load-bearing and energy storage capabilities within a single material system, known as multifunctional structural batteries, holds immense promise for advancing structural energy storage technologies. These systems offer significant weight reduction and enhanced safety, but their commercialization is hindered by challenges due to vast unexplored design spaces and costly trial-and-error processes. In this work, we employ an experimentally validated computational framework to accelerate the design of carbon fiber (CF)-based structural batteries impregnated with solid polymer electrolyte (SPE). To analyze the mechanical behavior, a finite element analysis (FEA) model powered by computational micromechanics was used to investigate the CF/SPE interface and damage mechanisms to predict the macro-effective material properties. To preform accurate forecasts on energy storage, a data-driven machine learning approach based on artificial neural networks (ANN) was optimized via a Bayesian optimization algorithm to predict the structural battery's future capacity. Furthermore, we validate the optimized ANN model in a rapid capacity degradation condition, showcasing the suitability of such algorithms for studying coupled multifunctional structures under mechanical and electrochemical loads, providing promising insights for optimizing the development of multifunctional composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jerry完成签到,获得积分10
1秒前
xiaotudou95应助执着汉堡采纳,获得10
4秒前
6秒前
6秒前
7秒前
dhjskak发布了新的文献求助20
8秒前
9秒前
SiO2完成签到 ,获得积分10
9秒前
鑫xx发布了新的文献求助10
9秒前
junjun发布了新的文献求助10
12秒前
么么叽发布了新的文献求助10
13秒前
13秒前
孟繁荣发布了新的文献求助10
13秒前
15秒前
15秒前
21秒前
22秒前
sarah完成签到,获得积分10
24秒前
26秒前
BEYOND啊完成签到 ,获得积分10
26秒前
Booty应助小宋采纳,获得10
28秒前
达先生发布了新的文献求助10
28秒前
28秒前
31秒前
yuaner发布了新的文献求助10
33秒前
33秒前
JamesPei应助不安磬采纳,获得10
33秒前
34秒前
李健应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
李爱国应助科研通管家采纳,获得10
34秒前
SciGPT应助儒雅的读书人采纳,获得10
34秒前
乐乐应助科研通管家采纳,获得30
35秒前
iNk应助科研通管家采纳,获得20
35秒前
iNk应助科研通管家采纳,获得20
35秒前
852应助科研通管家采纳,获得10
35秒前
爆米花应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843103
求助须知:如何正确求助?哪些是违规求助? 3385297
关于积分的说明 10539964
捐赠科研通 3105922
什么是DOI,文献DOI怎么找? 1710740
邀请新用户注册赠送积分活动 823719
科研通“疑难数据库(出版商)”最低求助积分说明 774264