Bullet Hole Detection in a Military Domain Using Mask R-CNN and ResNet-50

计算机科学 人工智能 卷积神经网络 计算机视觉 深度学习 分割 模式识别(心理学)
作者
Tanzil Ahmed,Salman Rahman,Abdullah Al Mahmud,Md Abdur Razzak,Nusrat Sharmin
标识
DOI:10.1109/iconat57137.2023.10080859
摘要

Small arms shooting practices and competitions are routine activities in the military domain. The shooting group or bullet group analysis serves as a metric for the precision of a weapon, the shooter's accuracy, and consistency, and as a method for improving or refining one's shooting abilities. This analysis mechanism, however, is either manual or semi-automatic, employing image processing-based algorithms such as template matching, histogram equalization, white balancing, median and gaussian altering, peak detection, and image subtraction in an indoor setting, which is incapable of adapting to environmental conditions such as humidity, temperature, ambient light, wind speed, and rain, among others. Recent advancements in artificial intelligence or deep learning techniques explored ways to facilitate automation in various sectors. In this paper, we have used such deep learning approaches to automize the shooting system in real-time within a military domain and achieved success in resolving the traditional image processing drawbacks. Our proposed methodology has two phases. The first phase uses Mask R-CNN a conceptually simple, flexible, and general framework for object instance segmentation to extract the target region from the environment, and in the second phase, we fed the output segmented target of the first phase to ResNet-50 a convolutional neural network architecture to detect the bullet holes. Several experiments have been conducted on real-time datasets and the results show 0.87 of average precision using mask R-CNN to segment the target and ResNet-50 give 0.80 to detect bullet holes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助单纯的老头采纳,获得10
1秒前
谈笑间发布了新的文献求助30
2秒前
小赵发布了新的文献求助10
2秒前
在水一方应助迪卢克采纳,获得10
4秒前
pokikiii发布了新的文献求助10
5秒前
眠眠羊发布了新的文献求助10
6秒前
五55完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
慕青应助虫虫采纳,获得10
9秒前
Marcus完成签到,获得积分10
10秒前
marrylet发布了新的文献求助10
11秒前
12秒前
张甜发布了新的文献求助10
13秒前
pokikiii完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
二雷子给二雷子的求助进行了留言
16秒前
Autin完成签到,获得积分0
16秒前
SciGPT应助光亮向露采纳,获得10
17秒前
Bioxcai完成签到,获得积分10
17秒前
17秒前
沐林森发布了新的文献求助10
18秒前
19秒前
骆马湖发布了新的文献求助10
19秒前
19秒前
酷波er应助朴实思天采纳,获得30
20秒前
虫虫发布了新的文献求助10
21秒前
兔子发布了新的文献求助10
21秒前
21秒前
22秒前
24秒前
lt发布了新的文献求助10
25秒前
khjia完成签到,获得积分10
25秒前
Orange应助淡定的广山采纳,获得10
26秒前
27秒前
范先生发布了新的文献求助10
27秒前
赘婿应助眠眠羊采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4829831
求助须知:如何正确求助?哪些是违规求助? 4135720
关于积分的说明 12800145
捐赠科研通 3877580
什么是DOI,文献DOI怎么找? 2133081
邀请新用户注册赠送积分活动 1153169
关于科研通互助平台的介绍 1051472