材料科学
锂(药物)
石墨烯
钠
表面改性
超短脉冲
化学工程
纳米技术
钾
无机化学
化学
激光器
光学
医学
物理
内分泌学
工程类
冶金
作者
Zhenya Luo,Jun Ma,Xiao Wang,Duanwei Chen,Dazhuan Wu,Junan Pan,Yong Pan,Xiaoping Ouyang
标识
DOI:10.1002/adma.202303444
摘要
Fluorinated carbon (CFx ) is considered as a promising cathode material for lithium/sodium/potassium primary batteries with superior theoretical energy density. However, achieving high energy and power densities simultaneously remains a considerable challenge due to the strong covalency of the C-F bond in the highly fluorinated CFx . Herein, an efficient surface engineering strategy combining surface defluorination and nitrogen doping enables fluorinated graphene nanosheets (DFG-N) to possess controllable conductive nanolayers and reasonably regulated C-F bonds. The DFG-N delivers an unprecedented dual performance for lithium primary batteries with a power density of 77456 W kg-1 and an energy density of 1067 Wh kg-1 at an ultrafast rate of 50 C, which is the highest level reported to date. The DFG-N also achieves a record power density of 15 256 and 17 881 W kg-1 at 10 C for sodium and potassium primary batteries, respectively. The characterization results and density functional theory calculations demonstrate that the excellent performance of DFG-N is attributed to surface engineering strategies that remarkably improve electronic and ionic conductivity without sacrificing the high fluorine content. This work provides a compelling strategy for developing advanced ultrafast primary batteries that combine ultrahigh energy density and power density.
科研通智能强力驱动
Strongly Powered by AbleSci AI