MultiModal flow field prediction method fusing operator learning and convolutional neural network

物理 卷积神经网络 人工神经网络 操作员(生物学) 人工智能 领域(数学) 流量(数学) 机器学习 模式识别(心理学) 机械 计算机科学 纯数学 化学 抑制因子 基因 转录因子 生物化学 数学
作者
Haolin Xiong,Yubo Li,Anping Wu,Jun Huang,Qingfeng Wang,Longgang Liu,Feng Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12) 被引量:4
标识
DOI:10.1063/5.0240459
摘要

The introduction of deep learning has resolved the high-cost issues associated with traditional methods in handling complex aerodynamics problems and is commonly used for simulating fluid behavior and optimizing aircraft design. However, flow field prediction based on deep learning typically encodes the freestream conditions and geometric information into the neural network model concurrently. This encoding scheme makes it difficult for the model to distinguish and deal with the intrinsic differences between these two types of information. As a result, the ability of the model to capture complex flow field features decreases and the difficulty of model fitting increases, which in turn reduces the effectiveness of the model. To solve these problems, this paper proposes the Operator-Convolution MultiModal Fusion Network (OCMMFNet), a new neural network architecture to predict the flow fields of airfoils with various geometries and freestream conditions. The proposed network architecture uses a freestream generalization network to encode the input freestream conditions. The resulting approximate flow field information is combined with the airfoil geometry information and fed into a shape feature compensation network to improve the prediction accuracy. We compare the performance of OCMMFNet with those of a deep operator network(DeepONet) and a vision transformer(ViT) model. When generalizing both freestream conditions and airfoil shapes, OCMMFNet reduces the prediction error in the pressure field by 9.71% and 3.76% compared to DeepONet and ViT, respectively. In tests involving extrapolation of Reynolds numbers, OCMMFNet significantly reduces the prediction error in the pressure field by 13.73% and 11.84% compared to DeepONet and ViT, respectively. The results show that OCMMFNet achieves better prediction accuracy than both DeepONet and ViT and displays superior robustness and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
收集快乐完成签到 ,获得积分10
1秒前
GY发布了新的文献求助10
2秒前
Shuxueman完成签到,获得积分20
2秒前
sss发布了新的文献求助10
5秒前
hino发布了新的文献求助10
5秒前
华仔应助lily采纳,获得10
6秒前
6秒前
纸包鱼完成签到,获得积分10
6秒前
kento应助白桦采纳,获得50
7秒前
可靠的毛衣完成签到 ,获得积分10
8秒前
8秒前
10秒前
研友_VZG7GZ应助哈哈采纳,获得10
12秒前
僦是卜够完成签到,获得积分10
12秒前
小鲨鱼发布了新的文献求助10
13秒前
Juniorrr发布了新的文献求助10
14秒前
15秒前
时星完成签到,获得积分10
15秒前
研友_VZG7GZ应助好猛硬汉采纳,获得10
15秒前
16秒前
Shuxueman发布了新的文献求助10
17秒前
ZHOUYY关注了科研通微信公众号
17秒前
17秒前
爆米花应助代代采纳,获得10
17秒前
18秒前
20秒前
温柔烧鹅完成签到,获得积分10
20秒前
hzbzh完成签到,获得积分10
20秒前
lily发布了新的文献求助10
21秒前
21秒前
小薇完成签到,获得积分10
22秒前
ppxx发布了新的文献求助10
22秒前
莫名乐乐发布了新的文献求助10
22秒前
23秒前
23秒前
25秒前
番茄豆丁完成签到 ,获得积分10
25秒前
ZHOUYY发布了新的文献求助10
27秒前
烂漫的访天完成签到,获得积分10
30秒前
rhsfdfb发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452