Abstract WP175: Predicting Post-Stroke Cognitive Impairment (PSCI) Using Multiple Machine Learning Approaches

医学 冲程(发动机) 认知障碍 认知 物理医学与康复 机器学习 人工智能 精神科 机械工程 计算机科学 工程类
作者
Yuzhang Xie,Fadi Nahab,Yi Ge,Yuhua Wu,Jessica Saurman,Carl Yang,Xiao Hu
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:56 (Suppl_1)
标识
DOI:10.1161/str.56.suppl_1.wp175
摘要

Background: Post-stroke cognitive impairment (PSCI) is a condition characterized by cognitive decline that occurs after a stroke. PSCI affects up to 60% of stroke survivors. Early detection of those at high risk for PSCI is essential for timely intervention and personalized care. Electronic health records (EHRs) contain valuable data that can be leveraged by machine learning to predict PSCI, potentially enhancing patient outcomes. This study focuses on developing and validating machine learning models to predict PSCI, aiming to enable earlier diagnosis and improve post-stroke care. Methods: 7956 all-type stroke patients (including Ischemic&Hemorrhagic stroke) treated between 2012 and 2021 were extracted from Emory Healthcare system. We employed multiple methods to predict PSCI, using ICD codes and prescribed medications that were available up to the discharge of index strokes. First, we utilized traditional machine learning methods, including Logistic Regression, Support Vector Machine, and Random Forest to develop models. Then, we developed hypergraph models to enhance prediction performance. Unlike traditional graphs that only capture pair-wise relationships between pairs of entities, hypergraphs can model the more complex higher-order relationships among multiple entities, by allowing a hyperedge (encounter) to connect multiple vertices (ICD and medications) simultaneously among patient visits and EHR medical features. Finally, we compared the performance across different methods and selected the best one for the PSCI prediction task. We compared their performance on four metrics: ACC (Accuracy, the proportion of correct predictions), AUC (Area Under the ROC Curve, measuring the model's ability to distinguish between classes), AUPR (Area Under the Precision-Recall Curve, a comprehensive measure considering both precision and recall), and Macro-F1 (a balanced measure calculated by the harmonic mean of precision and recall). Results: We included 7956 all-type stroke patients (50% female, 56% non-white) in this analysis, where 1797 (23%) had diagnostic codes often used by clinicians at Emory to document PSCI. According to the performance, the hypergraph model was associated with higher ACC, AUC, AUPR, and Macro-F1 than other models. Conclusion: By comparing the results of various machine learning methods, we found that hypergraph model approaches outperform traditional machine learning methods in utilizing EHRs for predicting PSCI after a stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助轻松小张采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
zxt完成签到,获得积分10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
小李老博应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
小李老博应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
8秒前
欧拉完成签到,获得积分10
8秒前
Jemezs发布了新的文献求助10
11秒前
12秒前
kd完成签到,获得积分10
12秒前
14秒前
19秒前
20秒前
20秒前
23秒前
Hmbb发布了新的文献求助10
23秒前
后陡门的夏天完成签到 ,获得积分10
25秒前
ding应助小元采纳,获得10
25秒前
wentong完成签到,获得积分10
25秒前
EBA发布了新的文献求助10
26秒前
拼搏愚志完成签到 ,获得积分10
27秒前
专注的翠霜完成签到,获得积分10
27秒前
lu应助淡淡的楷瑞采纳,获得10
30秒前
上官若男应助Hmbb采纳,获得10
31秒前
爆米花应助老阎采纳,获得20
32秒前
EBA完成签到,获得积分10
33秒前
37秒前
顾矜应助古月采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777326
求助须知:如何正确求助?哪些是违规求助? 3322593
关于积分的说明 10210884
捐赠科研通 3037944
什么是DOI,文献DOI怎么找? 1666990
邀请新用户注册赠送积分活动 797911
科研通“疑难数据库(出版商)”最低求助积分说明 758072