Abstract WP175: Predicting Post-Stroke Cognitive Impairment (PSCI) Using Multiple Machine Learning Approaches

医学 冲程(发动机) 认知障碍 认知 物理医学与康复 机器学习 人工智能 精神科 计算机科学 机械工程 工程类
作者
Yuzhang Xie,Fadi Nahab,Yi Ge,Yuhua Wu,Jessica Saurman,Carl Yang,Xiao Hu
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:56 (Suppl_1)
标识
DOI:10.1161/str.56.suppl_1.wp175
摘要

Background: Post-stroke cognitive impairment (PSCI) is a condition characterized by cognitive decline that occurs after a stroke. PSCI affects up to 60% of stroke survivors. Early detection of those at high risk for PSCI is essential for timely intervention and personalized care. Electronic health records (EHRs) contain valuable data that can be leveraged by machine learning to predict PSCI, potentially enhancing patient outcomes. This study focuses on developing and validating machine learning models to predict PSCI, aiming to enable earlier diagnosis and improve post-stroke care. Methods: 7956 all-type stroke patients (including Ischemic&Hemorrhagic stroke) treated between 2012 and 2021 were extracted from Emory Healthcare system. We employed multiple methods to predict PSCI, using ICD codes and prescribed medications that were available up to the discharge of index strokes. First, we utilized traditional machine learning methods, including Logistic Regression, Support Vector Machine, and Random Forest to develop models. Then, we developed hypergraph models to enhance prediction performance. Unlike traditional graphs that only capture pair-wise relationships between pairs of entities, hypergraphs can model the more complex higher-order relationships among multiple entities, by allowing a hyperedge (encounter) to connect multiple vertices (ICD and medications) simultaneously among patient visits and EHR medical features. Finally, we compared the performance across different methods and selected the best one for the PSCI prediction task. We compared their performance on four metrics: ACC (Accuracy, the proportion of correct predictions), AUC (Area Under the ROC Curve, measuring the model's ability to distinguish between classes), AUPR (Area Under the Precision-Recall Curve, a comprehensive measure considering both precision and recall), and Macro-F1 (a balanced measure calculated by the harmonic mean of precision and recall). Results: We included 7956 all-type stroke patients (50% female, 56% non-white) in this analysis, where 1797 (23%) had diagnostic codes often used by clinicians at Emory to document PSCI. According to the performance, the hypergraph model was associated with higher ACC, AUC, AUPR, and Macro-F1 than other models. Conclusion: By comparing the results of various machine learning methods, we found that hypergraph model approaches outperform traditional machine learning methods in utilizing EHRs for predicting PSCI after a stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaojingbao发布了新的文献求助10
1秒前
KEN完成签到,获得积分10
1秒前
onlyblue完成签到,获得积分20
2秒前
阳光冰颜完成签到 ,获得积分10
3秒前
田千凝发布了新的文献求助10
3秒前
李爱国应助Paracosm采纳,获得10
3秒前
某强发布了新的文献求助10
4秒前
善学以致用应助精明松思采纳,获得10
4秒前
wanci应助吾儿坤采纳,获得10
5秒前
vv发布了新的文献求助20
5秒前
5秒前
5秒前
任性铅笔完成签到 ,获得积分10
6秒前
6秒前
6秒前
8秒前
程志鹏发布了新的文献求助10
9秒前
ShujunOvO发布了新的文献求助10
10秒前
10秒前
炒饭发布了新的文献求助10
10秒前
小马甲应助汎影采纳,获得10
11秒前
大模型应助relink采纳,获得10
11秒前
香蕉班发布了新的文献求助30
11秒前
科研通AI2S应助GAOSAN采纳,获得10
12秒前
搜集达人应助王大爷采纳,获得10
13秒前
斯文败类应助靓丽翠琴采纳,获得10
13秒前
14秒前
马某人发布了新的文献求助10
14秒前
14秒前
14秒前
yuki完成签到,获得积分10
15秒前
贾明灵完成签到,获得积分10
15秒前
Dr. Zhang发布了新的文献求助50
15秒前
iiiau完成签到,获得积分10
15秒前
15秒前
李健的小迷弟应助淡定采纳,获得10
16秒前
16秒前
真不错完成签到,获得积分10
17秒前
march完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助30
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138957
求助须知:如何正确求助?哪些是违规求助? 3675778
关于积分的说明 11619372
捐赠科研通 3369949
什么是DOI,文献DOI怎么找? 1851181
邀请新用户注册赠送积分活动 914368
科研通“疑难数据库(出版商)”最低求助积分说明 829198