Abstract WP175: Predicting Post-Stroke Cognitive Impairment (PSCI) Using Multiple Machine Learning Approaches

医学 冲程(发动机) 认知障碍 认知 物理医学与康复 机器学习 人工智能 精神科 计算机科学 机械工程 工程类
作者
Yuzhang Xie,Fadi Nahab,Yi Ge,Yuhua Wu,Jessica Saurman,Carl Yang,Xiao Hu
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:56 (Suppl_1)
标识
DOI:10.1161/str.56.suppl_1.wp175
摘要

Background: Post-stroke cognitive impairment (PSCI) is a condition characterized by cognitive decline that occurs after a stroke. PSCI affects up to 60% of stroke survivors. Early detection of those at high risk for PSCI is essential for timely intervention and personalized care. Electronic health records (EHRs) contain valuable data that can be leveraged by machine learning to predict PSCI, potentially enhancing patient outcomes. This study focuses on developing and validating machine learning models to predict PSCI, aiming to enable earlier diagnosis and improve post-stroke care. Methods: 7956 all-type stroke patients (including Ischemic&Hemorrhagic stroke) treated between 2012 and 2021 were extracted from Emory Healthcare system. We employed multiple methods to predict PSCI, using ICD codes and prescribed medications that were available up to the discharge of index strokes. First, we utilized traditional machine learning methods, including Logistic Regression, Support Vector Machine, and Random Forest to develop models. Then, we developed hypergraph models to enhance prediction performance. Unlike traditional graphs that only capture pair-wise relationships between pairs of entities, hypergraphs can model the more complex higher-order relationships among multiple entities, by allowing a hyperedge (encounter) to connect multiple vertices (ICD and medications) simultaneously among patient visits and EHR medical features. Finally, we compared the performance across different methods and selected the best one for the PSCI prediction task. We compared their performance on four metrics: ACC (Accuracy, the proportion of correct predictions), AUC (Area Under the ROC Curve, measuring the model's ability to distinguish between classes), AUPR (Area Under the Precision-Recall Curve, a comprehensive measure considering both precision and recall), and Macro-F1 (a balanced measure calculated by the harmonic mean of precision and recall). Results: We included 7956 all-type stroke patients (50% female, 56% non-white) in this analysis, where 1797 (23%) had diagnostic codes often used by clinicians at Emory to document PSCI. According to the performance, the hypergraph model was associated with higher ACC, AUC, AUPR, and Macro-F1 than other models. Conclusion: By comparing the results of various machine learning methods, we found that hypergraph model approaches outperform traditional machine learning methods in utilizing EHRs for predicting PSCI after a stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牙牙发布了新的文献求助10
刚刚
鲤鱼诗桃发布了新的文献求助10
1秒前
1秒前
2秒前
顾矜应助能干大树采纳,获得10
2秒前
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
ceeray23应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
加菲丰丰应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
changping应助科研通管家采纳,获得10
5秒前
211JZH发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
wu发布了新的文献求助10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
5秒前
changping应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
噗噗完成签到,获得积分10
5秒前
Yinoe发布了新的文献求助10
6秒前
cycle发布了新的文献求助10
7秒前
锅里有两条鱼完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
拾贰完成签到 ,获得积分10
10秒前
科研通AI2S应助好梦采纳,获得10
13秒前
欢呼的墨镜完成签到,获得积分10
14秒前
陈均涛完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360