Construction of an Artificially Intelligent Model for Accurate Detection of HCC by Integrating Clinical, Radiological, and Peripheral Immunological Features

可解释性 医学 人工智能 肝细胞癌 情态动词 放射性武器 机器学习 数据挖掘 计算机科学 放射科 内科学 化学 高分子化学
作者
Yangyang Wang,Shengqiang Chi,Yu Tian,Xueyao Li,Hang Zhang,Yiting Xu,Chao‐Yuan Huang,Yiwei Gao,Gaowei Jin,Qihan Fu,Wanyue Cao,Chen Cao,Xiaoning Liu,Yuquan Zhang,Yupeng Hong,Junjian Li,Xu Sun,Enliang Li,Yuhua Zhang,Weiyun Yao
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002281
摘要

Background: Integrating comprehensive information on hepatocellular carcinoma (HCC) is essential to improve its early detection. We aimed to develop a model with multi-modal features (MMF) using artificial intelligence (AI) approaches to enhance the performance of HCC detection. Materials and methods: A total of 1,092 participants were enrolled from 16 centers. These participants were allocated into the training, internal validation, and external validation cohorts. Peripheral blood specimens were collected prospectively and subjected to mass cytometry analysis. Clinical and radiological data were obtained from electrical medical records. Various AI methods were employed to identify pertinent features and construct single-modal models with optimal performance. The XGBoost algorithm was utilized to amalgamate these models, integrating multi-modal information and facilitating the development of a fusion model. Model evaluation and interpretability were demonstrated using the SHapley Additive exPlanations method. Results: We constructed the electronic health record, BioScore, RadiomicScore, and DLScore models based on clinical, radiological, and peripheral immunological features, respectively. Subsequently, these single-modal models were amalgamated to develop an all-in-one MMF model. The MMF model exhibited enhanced performance compared to models comprising only single-modal features in detecting HCC. This superiority in performance was confirmed through the internal and external validation cohorts, yielding area under the curve (AUC) values of 0.985 and 0.915, respectively. Additionally, the MMF model improved the detection ability in subpopulations of HCCs that were negative for alpha-fetoprotein and those with small size, with AUC values of 0.974 and 0.996, respectively. Conclusions: Integrating multi-modal features improved the performance of the model for HCC detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA完成签到,获得积分10
1秒前
rrrrrwwwww发布了新的文献求助10
1秒前
docR发布了新的文献求助10
2秒前
2秒前
小二郎应助nnn采纳,获得10
3秒前
红烧肉耶完成签到,获得积分10
3秒前
充电宝应助那只兔采纳,获得30
4秒前
慕青应助13981592626采纳,获得10
4秒前
幽默海燕完成签到 ,获得积分10
5秒前
5秒前
5秒前
畅快的小懒虫完成签到,获得积分10
7秒前
解语花发布了新的文献求助10
8秒前
ytshen3124发布了新的文献求助10
8秒前
椒闫皮皮虾完成签到,获得积分20
8秒前
kjz发布了新的文献求助30
9秒前
星辰大海应助茶博士采纳,获得10
10秒前
10秒前
11秒前
牛6发布了新的文献求助10
11秒前
大海完成签到,获得积分10
11秒前
12秒前
甜美早晨完成签到,获得积分10
13秒前
DFQZH发布了新的文献求助10
13秒前
16秒前
16秒前
zjm111发布了新的文献求助10
17秒前
WYK完成签到 ,获得积分10
18秒前
妇产科医生完成签到 ,获得积分10
18秒前
香蕉孤风完成签到,获得积分10
18秒前
19秒前
13981592626发布了新的文献求助10
20秒前
20秒前
Strike完成签到,获得积分10
20秒前
hetao286完成签到,获得积分10
20秒前
共享精神应助顺利秋灵采纳,获得10
21秒前
糊涂的道罡完成签到,获得积分20
22秒前
茶博士发布了新的文献求助10
23秒前
TIWOSS发布了新的文献求助10
26秒前
cquank完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4450691
求助须知:如何正确求助?哪些是违规求助? 3918476
关于积分的说明 12162399
捐赠科研通 3568459
什么是DOI,文献DOI怎么找? 1959579
邀请新用户注册赠送积分活动 999001
科研通“疑难数据库(出版商)”最低求助积分说明 894032