Development and validation of a nomogram for predicting the risk of developing gastric cancer based on a questionnaire: a cross–sectional study

列线图 医学 癌症 横断面研究 肿瘤科 医学物理学 内科学 病理
作者
Zhangsen Huang,Songyao Chen,Songcheng Yin,Zhaowen Shi,Liang Gu,Yanan Li,Haofan Yin,Zhijian Huang,Bo Li,X. Chen,Yilin Yang,Zhengli Wang,Hai Li,Changhua Zhang,Yulong He
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1351967
摘要

Background Detection of gastric cancer (GC) at early stages is an effective strategy for decreasing mortality. This study aimed to construct a prediction nomogram based on a questionnaire to assess the risk of developing GC. Methods Our study comprised a total of 4379 participants (2326 participants from outpatient at Fengqing People’s Hospital were considered for model development and internal validation, and 2053 participants from outpatients at the endoscopy center at the Seventh Affiliated Hospital of Sun Yat-Sen University were considered for independent external validation) and gastric mucosa status was determined by endoscopy and biopsies. The eligible participants in development cohort from Fengqing people’s Hospital were randomly separated into a training cohort (n=1629, 70.0%) and an internal validation cohort (n=697, 30.0%). The relevant features were selected by a least absolute shrinkage and selection operator (LASSO), and the ensuing features were evaluated through multivariable logistic regression analysis. Subsequently, the variables were selected to construct a prediction nomogram. The discriminative ability and predictive accuracy of the nomogram were evaluated by the C-index and calibration plot, respectively. Decision curve analysis (DCA) curves were used for the assessment of clinical benefit of the model. This model was developed to estimate the risk of developing neoplastic lesions according to the “transparent reporting of a multivariable prediction model for individual prognosis or diagnosis” (TRIPOD) statement. Results Six variables, including age, sex, alcohol consumption, cigarette smoking, education level, and Hp infection status, were independent risk factors for the development of neoplastic lesions. Thus, these variables were incorporated into the final nomogram. The AUC of the nomogram were 0.701, 0.657 and 0.699 in the training, internal validation, and external validation cohorts, respectively. The calibration curve showed that the nomogram was in good agreement with the observed outcomes. Compared to treatment of all patients or none, our nomogram showed a notably higher clinical benefit. Conclusion This nomogram proved to be a convenient, cost-effective tool to effectively predict an individual’s risk of developing neoplastic lesions, and it can act as a prescreening tool before gastroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
pcy完成签到,获得积分10
1秒前
科研通AI5应助贺秋凉采纳,获得10
1秒前
小M完成签到,获得积分10
1秒前
明亮擎完成签到,获得积分10
2秒前
科研通AI5应助冷冰凉采纳,获得10
2秒前
今后应助陈思采纳,获得10
2秒前
去码头整点薯条完成签到,获得积分10
2秒前
九三发布了新的文献求助10
3秒前
科研通AI5应助研友_Z7WQzZ采纳,获得10
3秒前
3秒前
3秒前
传奇3应助踏雪寻梅采纳,获得10
4秒前
英俊的铭应助ZYY采纳,获得10
4秒前
彭于彦祖应助io采纳,获得20
4秒前
acceleactor发布了新的文献求助10
4秒前
5秒前
122完成签到,获得积分20
5秒前
5秒前
英姑应助xun采纳,获得10
6秒前
锦时完成签到,获得积分10
7秒前
hahaha完成签到,获得积分10
7秒前
lili发布了新的文献求助30
7秒前
黄家宝发布了新的文献求助10
7秒前
8秒前
司纤户羽发布了新的文献求助10
8秒前
大咪完成签到 ,获得积分10
8秒前
ddd完成签到,获得积分10
9秒前
122发布了新的文献求助10
9秒前
Ava应助橙子采纳,获得10
9秒前
10秒前
10秒前
10秒前
四季刻歌完成签到,获得积分10
10秒前
11秒前
shang完成签到 ,获得积分10
11秒前
感动鞋垫发布了新的文献求助10
12秒前
acceleactor完成签到,获得积分10
12秒前
夕诙发布了新的文献求助30
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841750
求助须知:如何正确求助?哪些是违规求助? 3383780
关于积分的说明 10531119
捐赠科研通 3103889
什么是DOI,文献DOI怎么找? 1709437
邀请新用户注册赠送积分活动 823205
科研通“疑难数据库(出版商)”最低求助积分说明 773845